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The Newcomb-Benford law, also known as Benford’s law or the first-digit law, applies to many
tabulated sets of real-world data. It states that the probability that the first significant digit is n,
(n € {1,2,3,4,5,6,7,8,9}) is given by log(1 + 1/n). The law has been verified empirically with
widely differing data sets. In the present paper it is shown that it does not necessarily follow from
the requirement of scale invariance alone, as has been claimed. This condition is necessary, but not
sufficient. In addition, it is necessary to consider the properties of certain finite subsets of the set of

rational numbers.
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In 1881 the astronomer Newcomb [1] published a
short paper in which he reported the empirical fact
that, in data drawn from astronomical measurements,
the first significant figures are not distributed equally
among the digits 1 to 9. He showed that his data agreed
well with the assumption that the figures are distributed
equally on a logarithmic scale, so that the probability,
the first significant digit of a number in the interval
[10™,10™F1) is n, is given by

_ log((n+1)-10™) —log(n-10™)
© log(10m+1) —log(10™) (1)
=log(1+1/n).

P

The probability is thus the same for all decades and
hence applies to the whole set.

Newcomb’s attention was drawn to this apparent
anomaly by the fact that booklets with tables of loga-
rithms, which he and his colleagues used for their cal-
culations, showed more signs of wear on the first pages
than on later ones'. He attempts to justify the logarith-
mic distribution by assuming that “numbers occurring
in nature are to be considered as ratios of quantities”
and by considering what happens when, starting from
a set of (rational) numbers with an arbitrary distribu-
tion, one forms ratios of these numbers, then ratios of
the ratios, and so on indefinitely. He claims that this
process will eventually result in an even distribution of

! “That the digits do not occur with equal frequency must be ev-
ident to anyone making much use of logarithmic tables and noticing
how much faster the first pages wear out than the last ones.”

the numbers thus formed on a logarithmic scale, what-
ever the distribution of the starting set. However, his
proof is not rigorous (the key sentence begins with “It
is evident that...”), and it is not clear why the numbers
occurring in nature should be the result of indefinitely
repeated divisions.

A paper published in 1938 by Benford [2] begins,
like Newcomb’s, with a remark on the state of well-
used logarithmic tables?. It is remarkable that both
this 21-page article and Newcomb’s short paper are
devoid of references, so it is not clear whether Ben-
ford was aware of Newcomb’s paper or not. Benford
gives many examples of data collected from different
sources (geographical data, populations, newspapers,
physical properties, and constants, etc.) which follow
the first-digit law closely. He gives a lengthy discus-
sion of the phenomenon and concludes that “[the loga-
rithmic law] can be interpreted as meaning that [natu-
ral phenomena] proceed on a logarithmic or geometric
scale”.

Equation (1) is equivalent to the statement that the
density of numbers on a linear scale follows a function
of the form f(x) = k/x, where k is a constant, since

(D0 pdx/x (141
Pn:fn.lom /x: n(l+ /”)zlog(l-i-l/n).

o kdx/x In(10)

2 “It has been observed that the pages of a well used table of
common logarithms show evidence of a selective use of the natural
numbers”.
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Table 1. Relative frequencies of the first digits in the finite set S compared with the Newcomb-Benford law.

First digit 1 2 3 4 5 6 7 8 9
p+q <1000 0.3016 0.1754 0.1244 0.0971 0.0787 0.0665 0.0587 0.0521 0.0456
Equation (1) 0.3010 0.1761 0.1249 0.0960 0.0792 0.0669 0.0580 0.0512 0.0458

This means that the three properties (a) even distri-
bution on a log scale, (b) 1/x distribution on a linear
scale, and (c) the distribution of the first digits given
by (1) are mathematically equivalent.

The Newcomb-Benford Law has been empirically
verified for a large number of data sources (for a con-
cise review and bibliography see e. g. Weinstein [3]).
However, many special distributions, such as the size
distributions of crushed rocks [4], follow other laws,
even if they appear to be “random”. The best agree-
ment is found with large data sets drawn from many
different sources.

The Newcomb-Benford law should be scale invari-
ant, since any universal law must be independent of the
units of measurement used, otherwise it would not be
universal. Pinkham [5] has shown that (1) is the only
function for the digit probability which satisfies the
strict requirement of scale invariance. However, this
condition should be relaxed, because we cannot de-
termine the absolute density, so if the change of units
has only the effect of multiplying the density function
with a constant, this cannot be detected by the analysis
of real data. This means that the density function f(x)
must satisfy the condition

fx)dx =B f(ax)d(Box) = flax)=f(x)/a, (2)

where o and 3 are constants. It is easily shown that this
condition is satisfied by any simple power of the form
f(x) = kx, where k is a constant, and i is any integer,
not only —1, including O (even distribution).

Hill [6] discusses the consequences of scale and
base invariance and uses formal probability theory to
show that “if distributions are selected at random [. .. ]
and random samples are then taken from these distribu-
tions, the significant digits of the combined sample will
converge to the logarithmic (Benford) distribution”.

Starting from the 1/x distribution function it is also
possible to deduce the relative frequencies of the 2nd,
3rd, etc. digits, which of course include 0, and also the
conditional probabilities (e. g. the probability that the
second digit will be m when the first is n). Further, the
corresponding probabilities can also be given for other
number systems, e. g. octal or hexadecimal. The fol-
lowing discussion is limited to the linear density func-
tion, since everything else follows from that.

We first note that the representation of any physi-
cal measurement is an element of the set of rational
numbers. Since the sign of the number is not impor-
tant in the present analysis, the discussion may be lim-
ited to the positive (non-zero) rational numbers defined
by Q = {p/qlp,q € N}. Clearly, if we disregard any
power-of-ten factor, which will not affect the distribu-
tion of the first significant digits, there is a limit to the
size of p and ¢ for natural numbers which can be repre-
sented in print; thus all rational numbers which appear
in tables belong to a finite subset S of Q*, defined e. g.
by the condition that both p and g are less than or equal
to some (large) natural number N, or p +¢g < N. Inde-
pendently of the precise limits imposed on p and g,
S will have the property that

XES—1/xeS, 3)
since any pair of natural numbers (p,q) may be used
to represent the rational number x = p/q and its recip-
rocal 1/x = g/p. We now show that (3), together with
(2) leads to a 1/x distribution of the elements of S on a
linear scale of the rational numbers.

Let x; and x, be two elements of the set S. Then
it follows from the above that 1/x; and 1/x, are
also elements of S. Further, for each x between x;
and x, there will a reciprocal number 1/x between 1 /x;
and 1/x,. Hence the number of elements of S in the
interval [xj,x;) is equal to the number in the inter-
val (1/x2,1/x;]. In the limit of large numbers, this
means that the density function f(x) for the set S must
have the property

fx)dx = —f(1/x)d(1/x) = f(1/x)dx/x>

and hence

f(1/x) =2 (x).

This does not uniquely define f(x), but if, in addition,
we take into account the requirement of scale invari-
ance (2), the only value of i which satisfies (4) is in
fact —1. In other words, the Newcomb-Benford law
applies to the elements of S.

Of course the agreement is only approximate for any
finite set S. Table 1 shows the relative frequencies of
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the first digits of all rational numbers in the set S for
p+ g < 1000 compared with the theory. The set con-
tains 164,903 numbers (reducible fractions such as 2/4
or 6/3 etc. were not counted). Even for such a relatively
small set, the agreement is better than for any empirical
data set.

All measurements which have ever been published
in print are necessarily elements of a large but fi-
nite subset of the rational numbers with the prop-
erty (3). Thus, when such numbers are selected ran-
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Newcomb-Benford law. The reason in this case is
most probably the fact that populations tend to grow
exponentially.

[4] W.A. Kreiner, Z. Naturforsch. 58a, 618 (2003).
[5] R.S.Pinkham, Ann. Math. Stat. 32, 1223 (1961).
[6] T.P. Hill, Statistical Science 10, 354 (1995).



