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A new technique, the extended ansatz function method, is proposed to seek periodic solitary wave
solutions of integrable systems. Exact periodic solitary wave solutions for the (2+1)-dimensional
Korteweg-de Vries (KdV) equation are obtained by using this technique. By using the trial func-
tion method, Jacobi elliptic function double periodic solutions are also constructed for this equation.
This result shows that there exist periodic solitary waves in the different directions for the (2+1)-
dimensional KdV equation.
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1. Introduction

Boiti et al. derived the (2+1)-dimensional KdV
equation [1]

ut + 3(uv)x + uxxx = 0, ux − vy = 0 (1)

by using the idea of the weak Lax pair. (1) is also called
Boiti-Leon-Manna-Pempinelli equation [2]. For v = u
and y = x, (1) reads as the ubiquitous KdV equation in
dimensionless variables

ut + 6uux + uxxx = 0. (2)

Thus, (1) is a generalisation of the KdV equation. The
rich dromion structures and localized structures are re-
vealed by Lou et al. for (1) [3, 4] and Wazwaz [5].
In the recent years, many authors have applied the
Auto-Bäcklund transformation method [6] and the F-
expansion method [7] and found abundant exact solu-
tions for many nonlinear partial differential equations.
But these obtained structures do not include some pe-
riodic solitary wave solutions which is a new type of
soliton solutions.

Recently, Dai et al. introduced a new technique,
the extended homoclinic test technique, which is used
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for seeking periodic solitary wave solutions of inte-
grable equations and obtained periodic solitary wave
solutions for integrable equations [8 – 12]. In this pa-
per, we extend the technique mentioned above, intro-
duce a new ansatz function f (x,y, t) = b1e(Px+Qy+Wt) +
b2 cos(Kx + Ly +Vt)+ b3e−(Px+Qy+Wt), which is dif-
ferent from the function f (x,y, t) = 1 + a1 p(x, t) +
a2q(y, t)+Ap(x, t)q(y, t) in [4], and consider (1). Then,
we use the trial function method [13] to look for
the double periodic wave solutions of (1). Exact pe-
riodic solitary wave and double periodic wave solu-
tions are obtained for (1). This result shows that there
exists periodic solitary waves in the different direc-
tions for (1). To our knowledge, some periodic soli-
tary wave and double periodic wave solutions of the
(2+1)-dimensional KdV equation are new solutions up
to now.

The rest of this paper is organized as follows: in Sec-
tion 2, a procedure for solving the (2+1)-dimensional
KdV equation is given. Finally, some conclusions fol-
low.

2. Exact Periodic Solitary Wave and Double
Periodic Wave Solutions for the (2+1)-dimen-
sional KdV Equation

Method 1.
We transform (1) into the bilinear form

Dy(Dt + D3
x) f · f = 0 (3)
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by the transformation

u = 2ln( f x,y,t))xy,v = 2ln( f (x,y,t))xx, (4)

where the bilinear operator Dm
x Dn

t is defined as

Dm
x Dn

t a ·b =
(

∂
∂x

− ∂
∂x′

)m (
∂
∂t

− ∂
∂t ′

)n

·a(x,t)b(x′,t ′)|x=x′ ,t=t′ .

(5)

Then (3) can be rewritten as

2
(

fyt f − fy ft + fxxxy f + 3 fxx fxy

− 3 fxxy fx − fxxx fy
)

= 0.
(6)

We express the function f in the form

f (x,y, t) = b1e(Px+Qy+Wt) + b2 cos(Kx + Ly +Vt)

+ b3e−(Px+QY+Wt).
(7)

Substituting (7) into (6), we obtain an algebraic equa-

tion for e j(Px+QY+Wt), sin(Kx+Ly+vt), and cos(Kx+
Ly + vt). Equating all therein coefficients to zero
( j = −1,0,1) yields a set of algebraic equations for
b1,b2,b3,P,Q,W,K,L and V :

16b1Qb3P3 + 4b1Qb3W −b2
2LV + 4b2

2LK3 = 0,

−b2Lb3P3 + b3Qb2K3 −b3Qb2V −b2Lb3W

+ 3b3Pb2LK2 −3b2Kb3P2Q = 0,

−b2b3QW −b3b2VL+ b3P3Qb2 + b2LK3b3

−3b2K2b3PQ−3b3P2b2LK = 0,

−b1Qb2K3 + b2Lb1P3 + b2Lb1W + b1Qb2V

−3b1Pb2LK2 + 3b2Kb1P2Q = 0,

b1P3Qb2 + b2LK3b1 + b2b1QW −b1b2VL

−3b2K2b1PQ−3b1P2b2LK = 0.

(8)

Solving this system of algebraic equations with the aid
of Maple, we can obtain the following results.

Case 1.

P = −1
4

KLb2
2

b1Qb3
, W = − 1

64
b2

2LK3(48b2
1Q2b2

3 −L2b4
2)

b3
1Q3b3

3
, V =

1
16

K3(16b2
1Q2b2

3 −3L2b4
2)

b2
1Q2b2

3
,

K = K, L = L, Q = Q, b1 = b1, b2 = b2, b3 = b3,

(9)

where K, L, Q, b1, b2, b3 are free parameters. Setting b3 = ±b1, we have

f1(x,y, t) = 2b1 cosh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt),

f2(x,y, t) = 2b1 sinh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt).
(10)

Substituting (10) into (4) yields periodic soliton solutions of (1) as follows:

u1(x,y, t) = 2
{

4b2
1PQ−b2

2LK + 2b1b2(PQ−KL)cosh(Px + Qy +Wt)cos(Kx + Ly +Vt)
(2b1 cosh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

+
2b1b2(PL+ KQ)sinh(Px + Qy +Wt)sin(Kx + Ly +Vt)

(2b1 cosh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

}
,

v1(x,y, t) = 2
{

4b2
1P2 −b2

2K2 + 2b1b2(P2 −K2)cosh(Px + Qy +Wt)cos(Kx + Ly +Vt)
(2b1 cosh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

+
4b1b2PK sinh(Px + Qy +Wt)sin(Kx + Ly +Vt)

(2b1 cosh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

}
,

(11)

and

u2(x,y, t) = 2
{−4b2

1PQ−b2
2LK + 2b1b2(PQ−KL)sinh(Px + Qy +Wt)cos(Kx + Ly +Vt)
(2b1 sinh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

+
2b1b2(PL+ KQ)cosh(Px + Qy +Wt)sin(Kx + Ly +Vt)

(2b1 sinh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

}
,
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v2(x,y, t) = 2
{−4b2

1P2 −b2
2K2 + 2b1b2(P2 −K2)sinh(Px + Qy +Wt)cos(Kx + Ly +Vt)
(2b1 sinh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

+
4b1b2PK cosh(Px + Qy +Wt)sin(Kx + Ly +Vt)

(2b1 sinh(Px + Qy +Wt)+ b2 cos(Kx + Ly +Vt))2

}
, (12)

where all parameters are defined by (9).

Especially, when L = 0, (11) and (12) become

u1(x,y, t) =
4b1b2KQsin(Kx + K3t)sinh(Qy)

(2b1 cosh(Qy)+ b2 cos(Kx + K3t))2 ,

v1(x,y, t) =

−2b2K2(2b1 cos(Kx + K3t)cosh(Qy)+ b2)
(2b1 cosh(Qy)+ b2 cos(Kx + K3t))2 ,

(13)

and

u2(x,y, t) =
4b1b2KQsin(Kx + K3t)cosh(Qy)

(2b1 sinh(Qy)+ b2 cos(Kx + K3t))2 ,

v2(x,y, t) =

−2b2K2(2b1 cos(Kx + K3t)sinh(Qy)+ b2)
(2b1 sinh(Qy)+ b2 cos(Kx + K3t))2 ,

(14)

where b1, b2, K and Q are free parameters.

Case 2.

L = L, P = P, W = −P3, V = 0, Q = 0,

K = 0, b1 = b1, b2 = b2, b3 = b3.
(15)

Similar as previous case, we set b3 = ±b1 and obtain
the following periodic soliton solutions of (1):

u1(x,y, t) =
4b1b2PLsinh(Px−P3t)sin(Ly)

(2b1 cosh(Px−P3t)+ b2 cos(Ly))2 ,

v1(x,y, t) =
4b1P2(2b1 + b2 cosh(Px−P3t)cos(Ly))

(2b1 cosh(Px−P3t)+ b2 cos(Ly))2 ,

(16)

and

u2(x,y, t) =
4b1b2PLcosh(Px−P3t)sin(Ly)

(2b1 sinh(Px−P3t)+ b2 cos(Ly))2 ,

v2(x,y, t) =
−4b1P2(2b1−b2 cosh(Px−P3t)cos(Ly))

(2b1 sinh(Px−P3t)+ b2 cos(Ly))2 ,

(17)

where b1, b2, P and L are free parameters.

Fig. 1. Periodic soliton solution of (13) with b1 = 1, b2 = 2,
K = 2, Q = 2; (a): t = 1; (b): y = 1, t = 1; (c): x = 0, t = 1.

Case 3.

K =
√

3P, w = 8P3, L = L, P = P,

Q = −
√

3L
4b3b1

b2
2, v = 0, b1 = b1,

b2 = b2, b3 = b3.

(18)



612 C. Liu and Z. Dai · Periodic Wave Solutions for (2+1)-Dimensional KdV Equation

Fig. 2. Periodic soliton solution of (13) with b1 = 1, b2 = 2,
K = 2, Q = 2; (a): t = 1; (b): y = 1, t = 1; (c): x = 0, t = 1.

Setting b3 = ±b1 = b2, we get

f1(x,y, t) = b2
[
2cosh(Px− 1

4
L
√

3y + 8P3t)

+ cos(
√

3Px + Ly)
]
,

f2(x,y, t) = b2
[
2sinh(Px +

1
4

L
√

3y + 8P3t)

+ cos(
√

3Px + Ly)
]
.

(19)

Fig. 3. Periodic soliton solution of (17) with b1 = 1, b2 = 2,
P = 2, L = 2, and t = 0.

Fig. 4. Periodic soliton solution of (20) with P = 2, L = 2,
and t = 0.
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Substituting (19) into (4) yields periodic soliton solutions of (1) as follows:

u1(x,y, t) = −PL
{

4
√

3+ 5
√

3cosh(Px− 1
4 L

√
3y + 8P3t)cos(

√
3Px + Ly)

(2cosh(Px− 1
4 L

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

− sinh(Px− 1
4 L

√
3y + 8P3t)sin(

√
3Px + Ly)

(2cosh(Px− 1
4 L

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

}
,

v1(x,y, t) = 2P2
{

1−4cosh(Px− 1
4 L

√
3y + 8P3t)cos(

√
3Px + Ly)

(2cosh(Px− 1
4 L

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

+
4
√

3sinh(Px− 1
4 L

√
3y + 8P3t)sin(

√
3Px + Ly)

(2cosh(Px− 1
4 L

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

}
,

(20)

and

u2(x,y, t) = −PL
{

4
√

3+ 3
√

3sinh(Px + 1
4 L

√
3y + 8P3t)cos(

√
3Px + Ly)

(2sinh(Px + 1
4 L

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

− 7cosh(Px + 1
4 L

√
3y + 8P3t)sin(

√
3Px + Ly)

(2sinh(Px + 1
4 L

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

}
,

v2(x,y, t) = 2P2
{−7−4sinh(Px + 1

4 L
√

3y + 8P3t)cos(
√

3Px + Ly)

(2sinh(Px + 1
4 L

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

+
4
√

3cosh(Px + 1
4 L

√
3y + 8P3t)sin(

√
3Px + Ly)

(2sinh(Px + 1
4

√
3y + 8P3t)+ cos(

√
3Px + Ly))2

}
.

(21)

As shown in Figure 4, the solutions u1(x,y,t) and v1(x,y, t) in (20) (similarly, other periodic soliton solutions)
are obviously two periodic solitary waves which are periodic waves along the X-direction: X =

√
3Px + Ly with

period 2π , and are solitary waves along Y -direction: Y = Px− 1
4 L

√
3y + 8P3t. We note that here waves are

two left-propagation waves along Y -direction: Y = Px− 1
4 L

√
3y + 8P3t. This is a interesting phenomenon to the

evolution of shallow water waves. One problem, which we will study, is whether there exist a similar phenomenon
to other equations of shallow water waves or not.

Method 2.
Suppose that (1) has the Jacobi elliptic function double periodic solution as follows:

u =
A + Bcn2(ξ ,m)
C + cn2(ξ ,m)

, v =
E + Fcn2(ξ ,m)
G+ cn2(ξ ,m)

, (22)

where ξ = Px + Qy +Wt and A,B,C,E,F,G,P,Q,W are constants to be determined, m is the modulus of the
Jacobi elliptic function (0≤m≤ 1). With the aid of Maple, we substitute (22) into (1) and balance the coefficients
of cn(ξ ,m) j ( j = 0,2,4,6,8) to yield a set of algebraic equations. By solving this set of equations, we can
determine A,B,C,E,F,G,P,Q and W . Then, from (1) and (22) we obtain the double periodic function solutions
of (1), which read

u1 =−Q
3

(3PF −4P3 +W + 8m2P3)cn2(Px + Qy +Wt,m)−3EP
P2cn2(Px + Qy +Wt,m)

, v1 =
E + Fcn2(Px + Qy +Wt,m)

cn2(Px + Qy +Wt,m)
, (23)
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u2 =
Bcn2(Px + Qy +Wt,m)−B + 2QP

−1 + cn2(Px + Qy +Wt,m)
,

v2 =
1
3

[
(4P3Q−WQ−3P2B + 4P3m2Q)cn2(Px + Qy +Wt,m)

QP(−1 + cn2(Px + Qy +Wt,m))
+

2P3Q−4P3m2Q+WQ+ 3P2B
QP(−1 + cn2(Px + Qy +Wt,m))

]
,

(24)

and

u3 =
m2Bcn2(Px + Qy +Wt,m)+ B−Bm2−2Pm2Q+ 2PQ

1−m2 + m2cn2(Px + Qy +Wt,m)
,

v3 =
1
3

[
(4m4P3Q−m2WQ−3m2P2B−8P3m2Q)cn2(Px + Qy +Wt,m)

QP(1−m2 + m2cn2(Px + Qy +Wt,m))

+
WQm2 + 6P3m2Q−2P3Q−3P2B + 3P2Bm2 −4P3m4Q−WQ

QP(1−m2 + m2cn2(Px + Qy +Wt,m))

]
,

(25)

where B, E , F , P, Q and W are free parameters.

3. Conclusion

In this paper, the (2+1)-dimensional KdV equation
is investigated by the extended ansatz function method
and trial function method. Some periodic solitary wave
solutions and double periodic solutions are obtained
for this equation. The result shows that there exists
periodic solitary waves in the different directions for

(2+1)-dimensional KdV equation. These methods are
effective for seeking periodic solitary wave solutions
and double periodic solutions of some integrable equa-
tions.
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