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A generalization of He’s Exp-function method for nonlinear equations is introduced in this re-
search. New exact solutions are obtained for Burgers equation.
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1. Introduction

Recently, He and Wu [1] proposed a straightforward
and concise method, called Exp-function method for
solving nonlinear equations. The method has attracted
much attention and has been used by many authors
[2 – 13] to obtain travelling and nontravelling wave so-
lutions, compact-like solutions, and periodic solutions
of various nonlinear wave equations. In [5], we showed
that the main advantage of this method over the other
methods [14 – 23] is that it can be applied to a wide
class of nonlinear evolution equations including those
in which the odd and even-order derivative terms are
coexist. Also in [6], we used the method to obtain
different types of exact solutions for the generalized
Klein-Gordon equation.

In [7] and [8], Sheng Zhang applied the method
to obtain exact solutions for the Korteweg-de Vries
(KdV) equation with variable coefficients and Mac-
cari’s system, respectively. Also in [9], he applied
the method to obtain generalized solitonary solu-
tions for Riccati equation and hence new exact so-
lutions with three arbitrary functions were obtained
for the (2 + 1)-dimensional Broer-Kaup-Kupershmidt
equations. In [24, 25], Zhu extended the method to
solve differential-difference equations. In the review
article [26], He introduced a new interpretation of the
method. Also in [27], Zhou et. al., suggested a modi-
fied version of the Exp-function method for nonlinear
equation with high order of nonlinearity.

Although most of the research effort has been fo-
cused on using the method to solve different kinds
of nonlinear equations as mentioned above, no fur-
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ther improvement has been done on the method till
this moment. In this paper, the Exp-function method is
generalized and new exact soliton solutions for Burg-
ers equation are obtained. We also showed in this
work that the main advantage of the generalized Exp-
function method is that it can be applied to nonlinear
equations including those in which the odd and even-
order derivative terms are coexist. Burgers equation is
chosen to illustrate the method of solution.

2. Basic Idea of the Generalized Exp-Function
Method

Consider a given nonlinear wave equation

N(u,ut ,ux,uxx,utt ,utx, . . .) = 0, (1)

we seek its wave solutions

u = u(η), η = k(x−λ t). (2)

Consequently, (1) is reduced to the ordinary differen-
tial equation (ODE):

N(u,−kλ u′,ku′,k2u′′,k2λ 2u′′,−k2λ u′′, . . .) = 0. (3)

The generalized Exp-function method is based on the
assumption that the travelling wave solutions can be
expressed in the following form:

u(η) =
∑p

n=−c an [φ(η)]n

∑q
m=−d bm [φ(η)]m

=
a−c[φ(η)]−c + · · ·+ ap[φ(η)]p

b−d[φ(η)]−d + · · ·+ bq[φ(η)]q
,

(4)
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Case A B C φ(η): Solution of Riccati Equation (5)

1 free �= 0 0 − A
B + 1

B e(Bη) , i2 = −1

2 1
2 0 − 1

2
tanh(η)

1±sech(η) , coth(η)± csch(η), coth(η)
1±icsch(η) , tanh(η)± isech(η)

3 1
2 0 1

2 csc(η)− cot(η), tan(η)± sec(η), tan(η)
1±sec(η)

4 − 1
2 0 − 1

2 sec(η)− tan(η), cot(η)± csc(η), cot(η)
1±csc(η)

5 1 0 −1 tanh(η), coth(η)
6 1 0 1 tan(η)
7 −1 0 −1 cot(η)
8 1 −2 2 tan(η)

1+tan(η)

9 1 2 2 tan(η)
1−tan(η)

10 −1 2 −2 cot(η)
1+cot(η)

11 −1 −2 −2 cot(η)
1−cot(η)

12 0 0 �= 0 −1
Cη+C0

13 �= 0 0 0 Aη +C0

Table 1. The exact solutions for
Riccati Equation (5).

where c, d, p and q are positive integers which are
unknown to be further determined, an and bm are un-
known constants. In addition, φ(η) satisfies Riccati
equation

φ ′(η) = A + Bφ(η)+Cφ2(η). (5)

3. Analysis of the Method

In this paper, we aim to take the full advantage of
Riccati equation and use its solutions together with the
ansatz (4) to construct new exact solutions for non-
linear equations. Riccati equation (5) has many exact
solutions introduced in [28] by Chen and Zhang except
case (13) and given in the following Table 1.

4. Application of the Generalized Exp-Function
Method to Burgers Equation

A well-known model is the one-dimensional Burg-
ers equation

ut + uux−νuxx = 0, (6)

where ν > 0 is the coefficient of the kinematics viscos-
ity of the fluid. This equation was formulated by Burg-
ers in an attempt to model turbulent flow in a channel.
Using the transformation (2), (6) becomes

−λ u′ + uu′ −νku′′ = 0. (7)

On integrating this equation once with reference to η
and assuming that the constant of integration is zero,
we get

−λ u +
u2

2
−νku′ = 0. (8)

Using ansatz (4) and Riccati equation (5) for the high-
est linear term u′ with the highest order nonlinear
term u2, we have

u′ =
a1φ (−c−d−1) + · · ·+ a2φ (p+q+1)

b1φ (−2d) + · · ·+ b2φ (2q) (9)

and

u2 =
a3φ (−2c) + · · ·+ a4φ (2p)

b3φ (−2d) + · · ·+ b4φ (2q) , (10)

where ai and bi are determined coefficients only for
simplicity. From balancing the lowest order and high-
est order of φ in (9) and (10), we obtain −c − d −
1 = −2c and p + q + 1 = 2p which give c = d + 1
and p = q + 1. Here, we only consider the simplest
case d = q = 1 and consequently c = p = 2. Now the
ansatz (4) becomes

u(η) =
a−2φ−2 + a−1φ−1 + a0 + a1φ + a2φ2

b−1φ−1 + b0 + b1φ

=
a−2 + a−1φ + a0φ2 + a1φ3 + a2φ4

b−1φ + b0φ2 + b1φ3 .

(11)

Substituting (11) into (8) and multiplying the resulting
equation by (b−1φ + b0φ2 + b1φ3)2, we obtain

δ 0 + δ 1φ + δ 2φ2 + δ 3φ3 + δ 4φ4

+ δ 5φ5 + δ 6φ6 + δ 7φ7 + δ 8φ8 = 0,
(12)

where

δ 0 =
1
2
(a2

−2 + 2νkA),

δ 1 = 2[a−1 − (λ −νBk)b−1 + 2νkAb0]a−2,
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δ 2 = a2
−1 + 2a0a−2 + 2νkCa−2b−1 −2λ a−1b−1

−2νkAa0b−1 −2(λ −2νBk)a−2b0

+ 2νkAa−1b0 + 6νkAa−2b1,

δ 3 = 2a0a−1 + 2a1a−2 −2(λ + 2νBk)a0b−1

−4νkAa1b−1 + 4νkCa−2b0

−2(λ −νkB)a−1b0 −2(λ −3νkB)a−2b1

+ 4νkAa−1b1 + 8νkAa−2b2,

δ 4 = a2
0 + 2a1a−1 −2νkCa0b−1

−2(λ + 2νBk)a1b−1 + 2νkCa−1b0

−2λ a0b0 −2νkAa1b0 + 6νkCa−2b1

−2(λ −2νBk)a−1b1 + 2νkAa0b1

−2(λ −4νBk)a−2b2 + 6νkAa−1b2,

δ 5 = 2a0a1 −4νkCa1b−1

−2(λ + νkB)a1b0 −2(λ −νkB)a0b1

+ 4νkCa−1b1 + 8νkCa−2b2

−2(λ −3νkB)a−1b2 + 4νkAa0b2,

δ 6 = a2
1 −2νkCa1b0 + 2νkCa0b1

−2λ a1b1 + 6νkCa−1b2

−2(λ −2νkB)a0b2 + 2νkCa1b2,

δ 7 = 4νkCa0b2 −2(λ −νkB)a1b2,

δ 8 = −2νkCa1b2.

By setting

δ 0 = δ 1 = · · · = δ 8 = 0 (13)

and solving this system of algebraic equations by using
MATHEMATICA, we obtain the following results:

Case A.

a−2 = 0, a2 = 0, a1 = 0, b1 = 0, b−1 = 0,

λ = ±νk
√

B2 −4AC, b0 = − a−1

2νkA
,

a0 =
1

2A

(
Ba−1 ±|a−1|

√
B2 −4AC

)
.

(14)

Case B.

a−2 = 0, a2 = 0, a−1 = 0, b1 = 0, b−1 = 0,

λ =
±kν|a1|

√
B2 −4AC

a1
, b0 =

a1

2νkC
,

a0 =
Ba1 ±|a1|

√
B2 −4AC

a1
.

(15)

Case C.

a−2 = 0, a2 = 0, a1 = 0, b1 = 0,

a0 =
1

2A
(Ba−1 + ζ1), ζ1 = |a−1|

√
B2 −4AC,

b0 =
1

4νkA2

(
−Aa−1 + 2νkABb−1

±|A|
√

a2
−1 + 4νkb−1 [νk(B2 −4AC)b−1 + ζ1]

)
,

λ =
1

4Aa−1b−1

(
Aa2

−1 −2νkAb−1ζ1 ±a−1|A|

·
√

a2
−1 + 4νkb−1 [νk(B2 −4AC)b−1+ζ1]

)
. (16)

Case D.

a−2 = 0, a2 = 0, a1 = 0, b1 = 0,

a0 =
1

2A
(Ba−1 − ζ1),

b0 =
1

4νkA2

(
−Aa−1 + 2νkABb−1

±|A|
√

a2
−1 + 4νkb−1[νk(B2 −4AC)b−1− ζ1]

)
,

λ =
1

4Aa−1b−1

(
Aa2

−1 + 2νkAb−1ζ1 ±a−1|A|

·
√

a2
−1 + 4νkb−1[νk(B2 −4AC)b−1−ζ1]

)
. (17)

Case E.

a−2 = 0, a2 = 0, a0 = 0,

b−1 =
±Ba−1 (2kνAb0 + a−1)

2kν|B|ζ1
,

a1 =
−(B2 −2AC)a−1± ζ1|B|

2A2 ,

b1 =
[
B2(B2 −4AC)a2

−1∓ ((B2 −2AC)a−1

+ 4νkA2Cb0)ζ1|B|
][

4νkA2B(B2 −4AC)a−1
]−1

,

λ =
±kν|B|ζ1

Ba−1
. (18)

Case F.

a−2 = 0, a2 = 0, a−1 = 0, b−1 = 0,

a0 =
1

2C
(Ba1 − ζ2), ζ2 = |a1|

√
B2 −4AC,

b0 =
1

4νkC2

(
Ca1 + 2νkABb1

±|C|
√

a2
1 + 4νkb1[νk(B2 −4AC)b1 + ζ2]

)
,
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λ =
1

4a1b1C

(
Ca2

1 −2νkCb1ζ2

∓a1|C|
√

a2
1 + 4νkb1[νk(B2 −4AC)b1 + ζ2]

)
. (19)

Substituting the results of case A into (11) and using
the special solutions of (5), we obtain the following
multiple soliton-like and triangular periodic solutions
for the nonlinear Burgers equation:

u1 = 2νkB
(
−1 +

A
A− eBη

)
, λ =−νkB, (20)

u2 =−νk
(

1 +
1± sech(η)

tanh(η)

)
, λ =−νk, (21)

u3 = −νk
(

1 +
1± icsch(η)

coth(η)

)
, λ =−νk, (22)

u4 = −νk
(

1 +
1

coth(η)± csch(η)

)
,

λ = −νk,
(23)

u5 = −νk
(

1 +
1

tanh(η)± isech(η)

)
,

λ = −νk,
(24)

u6 = −νk
(

i+
1

csc(η)− cot(η)

)
,

λ = −iνk,
(25)

u7 = −νk
(

i+
1

tan(η)± sec(η)

)
,

λ = −iνk,
(26)

u8 = −νk
(

i+
1± sec(η)

tan(η)

)
, λ = −iνk, (27)

u9 = νk
(

i+
1

sec(η)− tan(η)

)
, λ = iνk, (28)

u10 = νk
(

i+
1

cot(η)± csc(η)

)
, λ = iνk, (29)

u11 = νk
(

i+
1± csc(η)

cot(η)

)
, λ = iνk, (30)

u12 = −2νk [1 + tanh(η)] , λ = −2νk, (31)

u13 = −2νk [1 + coth(η)] , λ = −2νk, (32)

u14 = −2νk [i± cot(η)] , λ = −2iνk, (33)

u15 = 2νk [−i+ tan(η)] , λ = −2iνk, (34)

u16 =
−2νkA

kAx +C0
. (35)

To compare our results with those obtained in [5], we
find that the exact solution given by u12 can be written
as

u12 = −2νk [1 + tanh(k(x−λ t))]

= λ
[

1− tanh(
λ
2ν

(x−λ t))
]
,

(36)

with λ = −2νk, which is the travelling wave solution
obtained by the Exp-function method in [5], Eq. 31.
Moreover, all the exact solutions obtained above can
be verified by substitution. It should be noted that the
exact solutions obtained above were derived from the
results of case A only with the special solutions of Ric-
cati equation. So, we may obtain more exact solutions
for Burgers equation if we investigate the results of the
rest of cases B – F. To make this point as clear as pos-
sible, let us discuss the results of case E. By using the
results of case E and the special solutions of (5), we
can obtain the following exact solutions from (11):

u17 = 2νkBa2
−1eBη[

νkb0A2(|a−1|−a−1)

+ a−1|a−1|eBη + νkb0(|a−1|+ a−1)e2Bη]−1
,

λ =
νkBa−1

|a−1| , (37)

u18 = 4νka−1
[
a−1(cos(2η)−1)+i|a−1|(1+sin(2η))

]
·[2iνk|a−1|b0−ia−1|a−1|−a2

−1+[2νkb0(i|a−1|−a−1)

−a2
−1]sin(2η)+ [ia−1|a−1|−2νkb0(i|a−1|

+a−1)]cos(2η)]−1, λ =
−iνka−1

|a−1| , (38)

u19 = 4νka−1
[
a−1(1−cos(2η))+i|a−1|(sin(2η)−1)

]
·[2iνk|a−1|b0−ia−1|a−1|−a2

−1 +[2νkb0(a−1−i|a−1|)
+a2

−1]sin(2η)+ [ia−1|a−1|−2νkb0(i|a−1|
+a−1)]cos(2η)

]−1
, λ =

iνka−1

|a−1| , (39)

u20 =4νka−1
[−a−1(1+cos(2η))+i|a−1|(1−sin(2η))

]
·[2iνk|a−1|b0+ia−1|a−1|+a2

−1 +[2νkb0(i|a−1|−a−1)

+a2
−1]sin(2η)+ [ia−1|a−1|+ 2νkb0(i|a−1|

+a−1)]cos(2η)
]−1

, λ =
iνka−1

|a−1| , (40)

u21 =4νka−1
[
a−1(1+cos(2η))+i|a−1|(sin(2η)−1)

]
·[2iνk|a−1|b0+ia−1|a−1|+a2

−1+[2νkb0(a−1−i|a−1|)
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−a2
−1]sin(2η)+ [ia−1|a−1|+ 2νkb0(i|a−1|

+a−1)]cos(2η)
]−1

, λ =
−iνka−1

|a−1| . (41)

Here, it is also important to note that all the exact
solutions given by (37 – 41) and obtained through the
results of Case E can be verified by substitution. The
main feature of these exact solutions is the inclusion of
the free parameters a−1 and b0. Moreover, to the best
of the author’s knowledge, all these exact solutions
are new for Burgers equation. Furthermore, the gen-
eralized Exp-function method introduced in this paper
not only gives more exact solutions compared with the
original method but also has the advantage to be ap-
plied to nonlinear equations including those in which
the odd and even-order derivative terms are coexist as
seen from the example of Burgers equation.

5. Conclusion

The Exp-function method has been successfully
generalized in this paper. As seen from the example
of Burgers equation, the main advantage of this gen-
eralized method over the other methods is that it can
be applied to a wide class of nonlinear evolution equa-
tions including those in which the odd and even-order
derivative terms are coexist.
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