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The influence of temperature dependent viscosity on the flow of a third grade fluid between two
coaxial cylinders is carried out. The heat transfer analysis is further analyzed. Homotopy analysis
method is employed in finding the series solutions. The effects of pertinent parameters have been
explored by plotting graphs.
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1. Introduction

The subject of non-Newtonian fluid mechanics is
very popular and an area of active research especially
in industrial and technological problems. Examples of
non-Newtonian fluids include tomatosauce, mustard,
mayonnaise, toothpaste, asphalt, lava and ice, mud
slides, snow avalanches, etc. The flow characteristics
of non-Newtonian fluids are quite different from those
of Newtonian fluids. The order of the governing equa-
tions for the non-Newtonian flow problem is in gen-
eral higher than the corresponding Newtonian prob-
lem. Hence one needs the additional boundary/initial
condition(s) for a unique solution. This issue of ex-
tra conditions has been discussed in detail by Ra-
jagopal [1], Rajagopal and Gupta [2], Rajagopal et
al. [3] and Rajagopal and Kaloni [4]. Furthermore the
equations of non-Newtonian fluids are more nonlinear
than the Newtonian fluids and to obtain an analytic so-
lution is not an easy task. Despite all these challenges,
various workers [5 – 15] are recently engaged in find-
ing the analytical solutions for flows involving non-
Newtonian fluids. Literature survey further indicates
that very less attention has been given to the flows
of non-Newtonian fluids with variable viscosity. The
works of Massoudi and Christie [16], Pakdermirli and
Yilbas [17] and Pantokratoras [18] may be mentioned
in this direction.

The primary objective of this investigation is to
model and analyze the flow between two coaxial cylin-
ders. Constitutive equations of a third grade fluid are
used. Two models of temperature dependent viscos-
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ity, namely Reynolds’ and Vogel’s, are considered. The
flow is driven by the motion of an inner cylinder and
a constant pressure gradient. The heat transfer analysis
is also carried out. Analytical expressions of velocity
and temperature are developed in each case by using a
newly powerful technique namely the homotopy analy-
sis method (HAM) [19 – 33]. Convergence of the series
solution is carefully checked. Finally, the solutions are
discussed with the help of graphs.

2. Problem Statement

Consider an incompressible and thermodynamic
third grade fluid between two infinite coaxial cylinders.
The flow is induced by a constant pressure gradient and
motion of an inner cylinder. The outer cylinder is kept
fixed. The heat transfer analysis is also taken into ac-
count. The dimensionless problems which can describe
the flow and heat transfer are [16]
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where µ∗, θ m, V0, Λ , β3, and R as defined in [17] are
the reference viscosity, a reference temperature (the
bulk mean fluid temperature), and a reference veloc-
ity, respectively, Γ is related to the Prandtl number and
Eckert number, β3 is a dimensional third grade parame-
ter, and Λ the dimensionless non-Newtonian viscosity.

3. Series Solutions for Reynolds’ Model

Here the viscosity is expressed in the form

µ = e−Mθ (6)

which by Maclaurin’s series can be written as

µ = 1−Mθ + O(θ 2). (7)

Note that M = 0 corresponds to the case of constant
viscosity. Invoking above equation into (1) and (2) one
has
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For HAM solution, we choose the following initial
guesses:

v0(r) =
(r−b)
(1−b)

, (10)

θ 0(r) =
(r−b)
(1−b)

. (11)

The auxiliary linear operators are in the form

Lvr(v) = v′′, (12)

Lθr(θ ) = θ ′′ (13)

which satisfy

Lvr(A1 + B1r) = 0, (14)

Lθr(A2 + B2r) = 0, (15)

where A1, A2, B1, B2 are the constants.
If p ∈ [0,1] is an embedding parameter and hv

and hθ are auxiliary parameters then the problems at
the zero- and mth-order are given by
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The boundary conditions at the mth order are

v̄m(r, p) = θ̄m(r, p) = 0, r = 1, (22)
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In (16) – (19)
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By Mathematica the solutions of (26) and (27) can be
written as
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where am,n and dm,n are constants which can be deter-
mined on substituting (28) into (18) and (19).

4. Series Solutions for Vogel’s Model

Here
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Invoking above expression, (1) and (2) become
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With the following initial guesses and auxiliary linear
operators
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the mth-order deformation problems are
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The expressions of vm and θ m are finally given by
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5. Graphical Results and Discussion

In order to report the convergence of the obtained
series solutions and the effects of sundry parameters
in the present investigation we plotted Figures 1 – 26.
Particularly the variations of C, Γ , Λ , M, A, and B are
seen. Here C is relevant to the pressure drop, Γ to the
viscous dissipation, Λ the non-Newtonian behaviour of
the fluid, A and B the variations of viscosity of Vogel’s
model and M the variations of viscosity of Reynolds’
model. The Figures 1 – 8 have been sketched for the
Reynolds’ model while Figures 9 – 26 correspond to
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Fig. 1. Temperature profile along the radial distance for dif-
ferent values of Λ for the Reynolds’ model.

Fig. 2. h-curve for different values of variable viscosity pa-
rameter Λ for the Reynolds’ model.

Fig. 3. Velocity profile along the radial distance for different
values of Λ for the Reynolds’ model.

the case of Vogel’s model. Figures 1 and 3 show the
temperature and velocity profiles along the radial dis-
tance for different values of Λ . It is found that velocity

Fig. 4. Temperature profile along the radial distance for dif-
ferent values of C for the Reynolds’ model.

Fig. 5. h-curve for different values of variable viscosity pa-
rameter C for the Reynolds’ model.

Fig. 6. Velocity profile along the radial distance for different
values of C for the Reynolds’ model.

and temperature fields increase by increasing Λ . Fig-
ure 2 is prepared to see the convergence region for
different values of Λ . The effects of constant pressure
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Fig. 7. Temperature profile along the radial distance for dif-
ferent values of M for the Reynolds’ model.

Fig. 8. Velocity profile along the radial distance for different
values of M for the Reynolds’ model.

Fig. 9. Temperature profile along the radial distance for dif-
ferent values of Λ for Vogel’s model.

gradient on the temperature and velocity can be seen
in Figures 4 and 6. It is observed from these figures

Fig. 10. h-curve for different values of Λ for Vogel’s model.

Fig. 11. Velocity profile along the radial distance for different
values of Λ for Vogel’s model.

Fig. 12. Temperature profile along the radial distance for dif-
ferent values of B for Vogel’s model.

that with an increase in C, both the velocity and tem-
perature decrease. Figure 7 is prepared for the temper-
ature distribution when different values of M are used.
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Fig. 13. h-curve for different values of B for Vogel’s model.

Fig. 14. Velocity profile along the radial distance for different
values of B for Vogel’s model.

Fig. 15. Temperature profile along the radial distance for dif-
ferent values of C for Vogel’s model.

It shows that with an increase in M the temperature de-
creases. This happens because with increasing M the
viscosity decreases and decrease of viscosity effects
the viscous dissipation which causes the decrease in

Fig. 16. h-curve for different values of variable viscosity pa-
rameter C for Vogel’s model.

Fig. 17. Velocity profile along the radial distance for the dif-
ferent values of C for Vogel’s model.

Fig. 18. Temperature profile along the radial distance for dif-
ferent values of Γ for Vogel’s model.

temperature. Figure 8 is plotted for the velocity distri-
bution against r when different values of M are taken
into account. It is seen from the figure that by increas-
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Fig. 19. h-curve for different values of Γ for Vogel’s model.

Fig. 20. Velocity profile along the radial distance for different
values of Γ for Vogel’s model.

Fig. 21. Temperature profile along the radial distance for dif-
ferent values of C∗ for Vogel’s model.

ing M, the velocity decreases. Figures 9 and 11 illus-
trate the temperature and velocity profiles along the
radial distance for different values of Λ . It is found
that both velocity and temperature increase when Λ in-

Fig. 22. h-curve for different values of C∗ for Vogel’s model.

Fig. 23. Velocity profile along the radial distance for different
values of C∗ for Vogel’s model.

Fig. 24. Temperature profile along the radial distance for dif-
ferent values of A for Vogel’s model.

creases. Figure 10 is prepared to see the convergence
region for different values of Λ . Figures 12 and 14
show the temperature and velocity profiles along the
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Fig. 25. h-curve for different values of variable viscosity pa-
rameter A for Vogel’s model.

Fig. 26. Velocity profile along the radial distance for different
values of A for Vogel’s model.

radial distance for different values of B. It is found that
the behaviour of B on the velocity and temperature is
similar to Λ . Figure 13 is prepared to see the conver-
gence region for different values of B. The effects of
constant pressure gradient on the temperature and ve-
locity are displayed in Figures 15 and 17. These fig-
ures indicate that by increasing C, both the velocity and
temperature increase. Figure 16 is prepared to see the
convergence region for different values of C. The ef-
fects of Brikmann number Γ are shown in Figures 18
and 20. It is found that with an increase in Γ , veloc-
ity decreases and temperature increases. As pointed
out in [16], the concept of the viscous dissipation is
of great value for many non-Newtonian fluids, such
as polymer processing, which is at very high temper-
atures, and flows encountered in glacier physics. Fig-

ure 19 is prepared to see the convergence region for
different values of Γ . Figures 21 and 23 show the tem-
perature and velocity profiles along the radial distance
for different values of C∗. Both velocity and tempera-
ture increase when C∗ is increased. Figure 22 is pre-
pared to see the convergence region for different val-
ues of C∗. Figures 24 and 26 show the temperature and
velocity profiles along the radial distance for different
values of A. Figure 25 is prepared to see the conver-
gence region for different values of A. It is noticed from
Figures 24 and 26 that both temperature and velocity
decrease when A increases.
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