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Dumlupınar University, Art-Science Faculty, Department of Mathematics, Kutahya, Turkey

Reprint requests to E. Y.; E-mail: eyusufoglu@dumlupinar.edu.tr

Z. Naturforsch. 64a, 583 – 587 (2009); received September 30, 2008 / revised December 24, 2008

The main objective of this article is to present a reliable algorithm to determine exact and approx-
imate solutions of the generalized Emden-Fowler type equations. The algorithm mainly is based on
He’s variational iteration method (VIM) with an alternative framework designed to overcome the
difficulty of the regular singular point at x = 0. In this method, general Lagrange multipliers are in-
troduced to construct a correction for the problem. The multipliers in the functional can be identified
optimally via the variational theory. The results reveal that the proposed method is very effective and
can be applied for other nonlinear problems.
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1. Introduction

The variational iteration method (VIM) was first
proposed by Ji-Huan He in 1998 [1, 2]. It was sys-
tematically studied in 1999 [3] and later [4], was suc-
cessfully applied to autonomous ordinary differential
equations [5], boundary value problems [6], calculus
of variations [7], nonlinear wave equations [8 – 11],
nonlinear thermoelectricity [12], nonlinear heat trans-
fer equations [13], astrophysics [14], biological prob-
lems [15, 16], integro-differential equations [17], non-
linear differential equations of fractional order [18],
nonlinear fluid mechanics [19], circuit theory [20], and
other fields [21 – 30].

By using VIM, we present in this paper a reliable al-
gorithm to determine exact and approximate solutions
of Emden-Fowler type equations of the form

u′′ +
2
x

u′ + a f (x)g(u) = 0,

u(0) = u0, u′(0) = 0,

(1)

where f (x) and g(u) are some given functions of x
and u, respectively. For f (x) = 1 and g(u) = un,
(1) is the standard Lane-Emden equation which was
used to model the thermal behaviour of a spherical
cloud of gas acting under the mutual attraction of its
molecules [31] and subject to the classical laws of
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thermodynamics. For other special forms of g(u), the
well-known Lane-Emden equation was used to model
several phenomena in mathematical physics and astro-
physics such as the theory of stellar structure, the ther-
mal behaviour of spherical cloud of gas, and isother-
mal gas spheres [31, 32]. A summary of the historical
developments of the Emden-Fowler equation may be
found in [33, 34], where an excellent bibliography on
its applications is given in [34].

The proposed algorithm will then be used to inves-
tigate a generalization of (1) of the form

u′′ +
p
x

u′ + a f (x)g(u) = 0,

u(0) = α, u′(0) = 0, p > 1.
(2)

We also observed that x = 0 is a regular singu-
lar point of (1) and (2) (see [35]). The main goal of
this work is directed towards numerical solutions to
find exact and approximate solutions of Emden-Fowler
type equations by VIM.

2. He’s Variational Iteration Method

To illustrate the basic concepts of the variational
iteration method, we consider the following general
nonlinear system:

Lu(x)+ Nu(x) = g(x), (3)
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where L is a linear operator, N is a nonlinear opera-
tor, and g(x) is an inhomogeneous term. According to
the VIM, we can construct a correction functional as
follows:

uk+1(x) = uk(x)+
x∫

0

λ (Luk(ξ )+Nŭk(ξ )−g(ξ ))dξ ,

(4)

where λ is a general multiplier, which can be identified
optimally via the variational theory [4], the subscript
k denotes the kth approximation, and ŭk is considered
as a restricted variation [1 – 3], i. e. δ ŭk = 0.

3. He’s Variational Iteration Method for
Equation (2)

In the illustrative examples which follow, we shall
again seek a solution valid in some interval 0 < x < R
(where R > 0). To solve (2) by means of variational
iteration method, a correction functional can be written
down as follows:

uk+1(x) = uk(x)+
x∫

0

λ
{

uk
′′(ξ )(ξ )+

p
ξ

ukk
′(ξ )

+ a f ξ g(ũk(ξ ))
}

dξ ,

(5)

where ũk is considered as a restricted variation. Making
the correction functional and noticing that δ ũk = 0,

δuk+1(x) = δuk(x)

+ δ
x∫

0

λ
{

uk
′′(ξ )+

p
ξ

uk
′(ξ )+ a f (ξ )g(ũk(ξ )

}
dξ ,

(6)

then (6) yields the following stationary conditions:

1 +
p
x

λ (x)− dλ (ξ )
dξ

∣∣∣
ξ=x

= 0, (7)

λ (ξ )
∣∣
ξ=x = 0, (8)

d
dξ

(
p
ξ

λ (ξ )− dλ (ξ )
dξ

)
= 0. (9)

The Lagrange multiplier, therefore, can be identified as

λ (ξ ) =
ξ

p−1

[(
ξ
x

)p−1

−1

]
. (10)

As a result, we obtain the following iteration formula:

uk+1(x) = uk(x)+
x∫

0

ξ
p−1

[(
ξ
x

)p−1

−1

]

·
{

uk
′′ +

p
ξ

uk
′ + a f (ξ )g(uk)

}
dξ .

(11)

We start with an initial approximation u0(x) = u(0)+
xu′(0) = α given by (2) and use the iteration for-
mula (11), then we obtain u1(x), u2(x), . . . .

3.1. Emden-Fowler Equation with f (x) = xm,
g(u) = un, and p = 2

In this section we will discuss an Emden-Folwer
equation of the form

u′′ +
2
x

u′ + axmun = 0, (12)

which has been the object of several studies. The most
interesting initial conditions are the following [21, 27]:

u(0) = 1, u′(0) = 0. (13)

It is important to note that for m = 0, (12) is the well-
known Lane-Emden equation of index n. It was phys-
ically shown that interesting values of n lie in the in-
terval [0, 5]. In addition, exact solutions exist only for
n = 0, 1, and 5. For other values of n, series solutions
are obtainable. The general solution (12) is constructed
for all possible values of m, n ≥ 0. Notice that (12) is
linear for n = 0 and 1, and nonlinear otherwise.

As stated before, we can use any selective function
for u0(x); preferably we use the initial condition (13),
i. e.

u0(x) = u(0)+ xxu′(0) = 1. (14)

For m = 0 and n = 0 (12) reduces to the equation of the
form

u′′ +
2
x

u′ + a = 0. (15)

By the above iteration formula (11), we can obtain

u1(x) = 1− 1
3!

ax2 (16)

and, in general, uk(x) = 1− 1
3! ax2 for k ≥ 2, which can

be verified through substitution.
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For m = 0 and n = 1 (12) reduces to the equation of
the form

u′′ +
2
x

u′ + au = 0. (17)

Substituting (14) into (11) and after some simplifica-
tions, we obtain the following successive approxima-
tions:

u1(x) = 1− 1
3!

ax2,

u2(x) = 1− 1
3!

ax2 +
1
5!

a2x4,

u3(x) = 1− 1
3!

ax2 +
1
5!

a2x4 − 1
7!

a3x6,

u4(x) = 1− 1
3!

ax2 +
1
5!

a2x4 − 1
7!

a3x6 +
1
9!

a4x8,

(18)

and the rest of the components of the iteration for-
mula (11) are obtained using the Maple Package. The
solution of u(x) in closed form is given by

u(x) =
sin(

√
ax)√

ax
. (19)

A very good agreement between the results of the vari-
ational iteration method and the exact solution were
observed, which confirms the validity of the He’s vari-
ational iteration method.

Now, we consider another example letting be m = 0
and n = 5. For this case (12) reduces to a equation of
the form

u′′ +
2
x

u′ + au5 = 0. (20)

Using (14) into (11) after some simplifications, we ob-
tain:

u1(x) = 1− 1
6

ax2,

u2(x) = 1− 1
6

ax2 +
1

24
a2x4 + o(x5),

u3(x) = 1− 1
6

ax2 +
1

24
a2x4 − 5

432
a3x6 + o(x7),

u4(x) = 1− 1
6

ax2 +
1

24
a2x4 − 5

432
a3x6

+
35

10368
a4x8 + o(x9),

(21)

and so on. The closed form solution of u(x) is given by

u(x) =
(

1 +
1
3

ax2
)−1/2

. (22)

We consider the example m = 2 and n = 2. For this
case (12) reduces to an equation of the form

u′′ +
2
x

u′ + ax2u2 = 0. (23)

Using the selection (14) into (11) after some simpli-
fications, we obtain the following successive approxi-
mations:

u1(x) = 1− 1
20

ax4,

u2(x) = 1− 1
20

ax4 +
1

720
a2x8 + o(x9),

u3(x) = 1− 1
20

ax4 +
1

720
a2x8 − 19

561600
a3x12

+ o(x13),

u4(x) = 1− 1
20

ax4 +
1

720
a2x8 − 19

561600
a3x12

+
29

38188800
a4x16 + o(x17),

...

(24)

which agrees exactly with the solution in [36].
Generally, for n = 0 we obtain the exact solution

u(x) = 1− a
(m+ 3)(m+ 2)

xm+2,

m �= −3, and m �= −2,
(25)

for the equation

u′′ +
2
x

u′ + axm = 0. (26)

3.2. Emden-Fowler equation with f (x) = xm lnx,
g(u) = un, and p = 2

Consider the nonlinear Emden-Fowler type equation

u′′ +
2
x

u′ + axm lnxun = 0, (27)

subject to the boundary conditions

u(0) = 1, u′(0) = 0. (28)

As stated before, we can use any selective function for
u0(x); preferably we use the initial condition (13), i. e.

u0(x) = u(0)+ xu′(0) = 1. (29)
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By the above iteration formula (11), we can obtain

u1(x) = u2(x) = . . . = u(x) = 1 +
3
4

ax− 1
2

ax lnx,

u1(x) = u2(x) = . . . = u(x) = 1 +
5

36
ax2 − 1

6
ax2 lnx,

u1(x) = u2(x) = . . . = u(x)

= 1 +
7

144
ax3 − 1

12
ax3 lnx,

u1(x) = u2(x) = . . . = u(x)

= 1 +
9

400
ax4 − 1

20
ax4 lnx,

u1(x) = u2(x) = . . . = u(x)

= 1 +
11

900
ax5 − 11

30
ax5 lnx,

(30)

which are the exact solutions of the initial value prob-
lem (27) – (28) for n = 0 and m = −1, 0, 1, 2, 3, re-
spectively.

A very good agreement between the results of the
variational iteration method and the exact solution
were observed, which confirms the validity of the He’s
variational iteration method.

For m = 0 and n = 2 (27) reduces to the equation of
the form

u′′ +
2
x

u′ + a lnxu2 = 0. (31)

Proceeding as before, we can start with the initial ap-
proximation (29). Using the variational iteration algo-
rithm we obtain

u1(x) = 1 +
( 5

36
− 1

6
lnx

)
ax2,

u2(x) = 1 +
( 5

36
− 1

6
lnx

)
ax2

+
( 17

1500
− 1

6
lnx +

1
60

ln2 x
)

a2x4 + o(x5),

u3(x) = 1 +
( 5

36
− 1

6
lnx

)
ax2

+
( 17

1500
− 1

6
lnx +

1
60

ln2 x
)

a2x4

+
( 1238791

1555848000
− 351341

111132000
lnx

)
a3x6

+
( 6079

1587600
ln2x− 11

7560
ln3x

)
a3x6 + o(x5),

...

(32)

which agrees exactly with the solution in [36].

Now, we consider another example with m = 2 and
n = 3. For this case (27) reduces to an equation of the
form

u′′ +
2
x

u′ + ax2 lnxu3 = 0. (33)

By the iteration formula (11) with the initial approxi-
mation (29), we can obtain the first three components
as follows:

u1(x) = 1 +
( 9

400
− 1

20
lnx

)
ax4,

u2(x) = 1 +
( 9

400
− 1

20
lnx

)
ax4

+
( 1231

3110400
− 83

43200
lnx

)
a2x8

+
1

480
a2x8 ln2 x + o(x9),

u3(x) = 1 +
( 9

400
− 1

20
lnx

)
ax4

+
( 1231

3110400
− 83

43200
lnx +

1
480

ln2 x
)

a2x8

+
( 148430159

213220672256000
+

35801
292032000

ln2 x

− 36387979
683354880000

lnx− 11
124800

ln3 x
)

a3x12

+ o(x13),
...

(34)

and the rest of the components of iteration formula (11)
are obtained using the Maple Package. These compo-
nents agree exactly with the components of the approx-
imate solution in [36].

4. Conclusion

In this paper, we presented a new application of
the He’s variational iteration method to exact and ap-
proximate solution of Emden-Fowler type equations.
This method can deal with highly nonlinear differen-
tial equations with no need for small parameter or lin-
earization. All the examples show that the results of
the method are in excellent agreement with those of
the adomian decomposition method. The solution pro-
cedure is very simple by means of variational iteration
theory, and few iterations lead to high accurate solu-
tions in a restricted region of convergence.
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This paper contains a new application of He’s vari-
ational iteration method to obtain infinite series rep-
resentation of solutions at singular point x = 0 of a
Emden-Fowler equation. Also, we point out that the
present technique can be extended to higher-order dif-
ferential equations having singular points. In particu-
larly, the present method can be used as alternative

method to classical Frobenius method [35] to obtain
infinite series solutions at the regular singular points of
linear differential equations.
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