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An analysis has been carried out to obtain the series solution of boundary layer flow of a mi-
cropolar fluid towards a shrinking sheet. The governing equations of micropolar fluid are simplified
using suitable similarity transformations and then solved by homotopy analysis method (HAM). The
convergence of the HAM solutions has been obtained by using homotopy-pade approximation. The
effects of various parameters such as porosity parameter R, the ratio A and the microinertia K on the
velocity and microinertia profiles as well as local skin friction coefficient are presented graphically

and in tabulated form.
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1. Introduction

A phenomena in which all solid bodies moving in a
fluid and describing the fluid motion near the stagna-
tion region is known as stagnation flow.

The boundary layer flows which describe the stagna-
tion flows and stretching surface arises in a number of
practical applications. Such applications include rotat-
ing blades, cooling of silicon wafers, and extrusion of a
polymer in a melt spinning process. The extrudate from
a die is generally drawn and simultaneously stretched
into a sheet which is then solidified through quenching
or gradual cooling by direct contact with water.

Stagnation point flow towards a stretching surface
has been discussed by many researchers. Mahapa-
tra and Gupta [1] have studied the magnetohydrody-
namic (MHD) stagnation point flow towards a stretch-
ing sheet. They found that the velocity at a point de-
creases/increases with the increase in the magnetic
field when the free stream velocity is less/greater than
the stretching velocity. Nazar et al. [2] discussed the
unsteady boundary layer flow in the region of stag-
nation point on a stretching surface. Later on Lok et
al. [3] extended the idea of Nazar et al. [2] for mixed
conviction flow. Mixed convection flow near a non-
orthogonal stagnation point towards a stretching ver-
tical plate has been discussed by Lok et al. [4]. They
considered both the assisting and opposing flows and
found that the flow has an inverted boundary layer suc-

tion when the stretching velocity of the surface ex-
ceeds the stagnation velocity of the free stream. Re-
cently, Wang [5] has discussed the off-centered stag-
nation flow towards a rotating disc. He found that the
non-alignment complicates the flow field and surface
shear, but does not effect the torque. In spite of all
these very little has been discussed about the shrink-
ing sheet when the velocity on the boundary is to-
wards a fixed point. The shrinking film and viscous
flow due to shrinking sheet have been discussed by
Miklavic and Wang [6] and Wang [7]. Hayat et al. [8]
extended the idea of Wang [5] and discussed the rotat-
ing flow over a shrinking surface. Recently, Nadeem
and Awais [9] examined the thin film flow of an un-
steady shrinking sheet through porous medium with
variable viscosity. More recently, Wang [10] has dis-
cussed the stagnation flow towards a shrinking sheet.
He observed that the non-alignment of the stagnation
flow and shrinking sheet complicates the flow struc-
ture. To the best of authors knowledge the stagnation
point flow towards a shrinking sheet has not been dis-
cussed for micropolar fluid. Micropolar fluid was pro-
posed by Eringen [11], because the classical Navier-
Stokes theory does not describe adequately the flow
properties of either polymeric fluids or certain natu-
rally occurring fluids such as animal blood. Micropo-
lar fluids have received considerable attention due to
their applications in a number of processes that occur
in industry. Such applications include the extrusion of
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polymer fluids solidification of liquid crystals, cooling
of a metallic plate in a bath, animal bloods, exotic lu-
bricants, and colloidal suspension. In the present pa-
per we have discussed the stagnation point flow of a
micropolar fluid towards a shrinking surface. The gov-
erning equations are highly nonlinear which have been
simplified by similarity transformations and then find
the analytic solutions by means of Homotopy analysis
method (HAM). HAM has been successfully applied to
many nonlinear problems [12—32]. Graphical results
are presented for different parameters appearing in the
present model.

2. Mathematical Formulation

Let us consider an incompressible micropolar fluid
near a stagnation point toward a porous shrinking plate.
We are considering a Cartesian coordinate system such
that shrinking sheet is taken along the x-axis while the
fluid is along the y-axis. The governing boundary layer
equations for the micropolar fluid are

du dv

a‘i‘afoa (1)
a—“+ u_ due y (vik az—u+£a—N 2)
"ox vayiuedx p) oy pay’
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The corresponding boundary conditions for the prob-
lem are

ue(x,0) = —bx, v(x,0) = —vy,
Ju “4)
N(x,0) = —na,

u(x,y) — ue(x) = ax,
)
N(x,y) — 0, as y — oo,
In the above equations, u and v are the velocity compo-
nents along x- and y-axis, u.(= ax) is the free stream
velocity, N is the microrotation velocity, V is the vis-
cosity, p is the density, n € [0, 1] is a constant, a, b both
are positive constants and j, ¥ and k are the microin-
ertia per unit mass, spin gradient viscosity and vortex
viscosity, respectively, which are assumed to be con-
stant. Here 7y is given by [33]

_(RHRY
y( 5 )J, (6)

and here we consider j = v/b as a reference length.
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We introduce the non-dimensional quantities

w=bxf(n), v=—(bv):fn)

N= (?) xg(n), n= (é) ¥, 0

¥ = (bv)2xf(n)

[

Making use of (6), the conditions of incompressibil-
ity is satisfied and (2), (3) along with boundary condi-
tions (4), (5) take the form

(L+K) "+ ff = f*+Kg +A7=0, (8

K
(1 + —) §"+rd—fg—K(2g+f")=0, (9

2

_ Y _ oy
f(O)—(bv)% R, f(0)=—1,
8(0)=—nf"(0), f'(n)=4, (10)

8(71):0 as 1 —— oo,

where A = £ (>0), K = ﬁ and R = vo/(bv)%.
For micropolar boundary layer flow, the wall skin
friction 7, is given by

T, = [(uﬁ—k)a—u—i—kN} . (11)
y=0

dy

The non-dimensional form of above equation can be
written as
1
CRE = (1+K)f"(0) +Kg(0) (12)
where uw (x) = bx is the characteristic velocity.
Equations (8) and (9) are coupled nonlinear differ-

ential equations. To find the analytic solutions we use
the Homotopy analysis method (HAM).

3. Solution of the Problem

According to HAM procedure, one can choose any
type of initial guess. Thus we take

o) =R+@An)+(1+A)(e"=1),  (13)
go(n) = —n-f5(0)e ", (14)
as the initial guesses and
_Pf of
Le[f(m)] = an® _an’ (15)
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2
Lle(m)] = 373;

as the auxiliary linear operators, which have the fol-
lowing property:

-8 (16)

L¢[cie™ +cre" +¢3] =0, (17)

Lglcae™ 4 ¢5e = 0. (18)

In the above equations ¢y, ¢3, ¢3, c4, and c5 are con-
stants. From (8) and (9), we can define the zeroth-order
deformation equations as

(1=p)Le[f(m:p) = fo(n)] = phyNs [ (03 p)], (19)
(1= p)Lg[§(n;p) —80(N)] = PlgNg[§(n; p)], (20)
. of
f(0;p) =R, a—f(O;p)=—1,
27 21
(O,P)__”W(O)»
.
%(n) A, 8M)—0as n—o, (22)

where /iy and /iy are non-zero auxiliary parameters, p €

[0,1] is the embedding parameter and
~ »3 RF
Ml =100 55 475+ k2
n
(23)
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Obviously
f(n,0)=fo(n) and g(n,0)=go(n), (25
fn,1)=f(n) and g(n,1)=g(n).  (26)

As p goes from 0 to 1, (1, p) and g(n, p) vary from
initial guesses fy(n) and go(n) to final solutions f(n),
and g(n), respectively. Making the assumption that the
auxiliary parameters /iy and fig are so properly cho-
sen that the Taylor series of f(1;p) and g(n;p) ex-
panded with respect to embedding parameters con-
verges at p = 1. Thus by making use of (25) and (26),
we write

o+ Y )

m=1

f(n)= 27)
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g(m) =go(m+ Y &gm(n) (28)
m=1
where

_19"f(n,p)
Jm(n) = m o |p=0, (29)
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Differentiating the zeroth-order deformation equa-
tions (19) and (20) and boundary conditions (21)
and (22) m times with respect to p, then dividing by m!
and finally setting p = 0, we get the mth-order defor-
mation equations as

Lf[fm(n) — Xmfm—1 (77)] = thf,m(n)» 3D
Lg[gm(n) _Xmgm—l(nﬂ = thg,m(n), (32)
Fn(0)=0, f,(0)=0, gu(0)=—nfy(0), (33)
M) =0, g(M)=0, as n—o0, (34
where
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a '9f; 9 i 32
gm 1_ Z ﬁ fm i—1 Az(l_QCm)a
a m— a m— l
Rem(m) = (145) Tt S0
m—1 Bf a_of (36)
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With the help of MATHEMATICA, the solution of (31)
and (32) subject to boundary conditions (33) and (34)
we can write as

fm) =Aoo+Aron+ Y. Y Acunte ™, (38)
k=0m=1

Z Z Bim nk —mn

where Ag g, A1,0, A,m and By ,, are constants.

(39)
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0 2 4 6 8 Fig. 4. Velocity field for different values of K
n when R=1and n=0.

4. Discussion

Equations (8) and (9) with boundary condition (10)
are solved analytically by HAM. In order to assess
the convergence of the HAM solutions, the homotopy-
pade approximation is applied and the results are tab-
ulated in Table 1. Also the 7 curves are plotted for
both f and g to show the convergence region which
are shown in Figures 1 and 2. Thus we conclude from
Table 1, Figures 1 and 2 that homotopy-pade approxi-
mation and 7-curves of HAM give the similar behavior
(convergent).

The analytical results for the velocity, microrota-
tion and skin friction coefficient have been obtained
for n = 0 (strong concentration) and n = 1/2 (weak
concentration) for different values of A, K and R.

In Table 2, the coefficient of skin friction is com-
puted. It is found that for a fix value of A and with
the increase in R and K, the coefficient of skin friction
increases and for any fixed R and K with the increase
in A, the coefficient of skin friction decreases for A <2
while for A > 2 it is increasing.

The non-dimensional velocity versus 1 for different
values of R and K are plotted in Figure 3 and 4. It is
observed that with the increase in R the magnitude
of velocity increases while the magnitude of velocity
decreases with the increase in K. Further we say
that suction causes the reduction of the boundary
layer. It is also shown that for large values of R, the
solution is not stable (see Fig. 5). In other words for
larger shrinking parameter our solutions are unstable.
It means that non-uniqueness and non-existence of
the solution happens due to unique character of the

Table. 1. Convergence of series solutions using homotopy-
pade approximation.

Homotopy-Pade approximation —£"(0) —g'(0)
[2/2] 1.65812 —0.712958
[3/3] 1.65812 —0.700015
[4/4] 1.66033 —0.700577
[5/5] 1.66026 —0.700351
[6/6] 1.66079 —0.700401
[7/7] 1.66075 —0.700364
[8/8] 1.66090 —0.700371
[10/10] 1.66093 —0.700361
[13/13] 1.66095 —0.700353
[14/14] 1.66095 —0.700353
[15/15] 1.66095 —0.700353

1

Table 2. Values of skin friction coefficient C ngx for K =0,

1,2and R =0, 1, 2, at n = 0 and n = 0.5 for different values
of 4.

A

K=0,R=0 K=1,R=1 K=2R=2 n
0.01 100.90 201.804 302.712 0
0.02 50.901 101.808 152.721 0
1.00 1.8601 3.8574 5.9401 0
2.00 1.1523 2.8820 6.2011 0
3.00 3.2552 24.224 82.713 0
4.00 20.0981 176.23 559.46 0
0.01 100.90 201.804 302.712 0.5
0.02 50.901 101.808 152.721 0.5

shrinking sheet [7]. The magnitude of microinertia g
for different values of R and K are plotted in Figures 6
and 7. It is observed that the magnitude of g decreases
with the increase in R and increase with the increase
in K, thus we also say that the behavior of R and K
on g is opposite but the boundary layer thickness
reduces for both the cases. The velocity field f for
different values of R and K when n = 1/2 is plotted in
Figures 8 and 9. It is seen that the behavior of velocity
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Fig. 5. Velocity field for different values of R
whenK=1,A=2,andn=0.

Fig. 6. Velocity field for different values of R
when K =1 and n=0.

Fig. 7. Velocity field for different values of K
when R=1and n=0.
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for weak concentration is almost the same as discussed ~ Acknowledgements
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