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In this paper, an iterative numerical solution of the higher-dimensional (3+1) physically important
nonlinear evolutionary equations is studied by using the homotopy perturbation method (HPM). For
this purpose, the Kadomstev-Petviashvili (KP) and the Jumbo-Miwa (JM) equations are analyzed
with the HPM and the available exact solutions obtained by the homogenous balance method will
be compared to show the accuracy of the proposed numerical algorithm. The results approves the

effectiveness and accuracy of the HPM.
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1. Introduction

In the last two decades, an important effort has been
devoted to the solution of the higher dimensional, i. e.
(2+1) and (3+1) dimensional, nonlinear partial differ-
ential equations. To obtain the solutions of such equa-
tions, various methods have been introduced. Mainly,
it is worth to mention the Hirota method [1], the Lie
Group analysis method [2—4], the travelling reduc-
tion applications [5], the tanh method [6, 7], the inverse
scattering transform method [8], and the homogenous
balance method [9—11].

For the solution of (3+1) dimensional nonlinear
equations, the homogenous balance method is success-
fully applied to the Kadomstev-Petviashvili (KP) and
the Jumbo-Miwa (JM) equations by Senthilvelan [12]
and exact solutions were obtained.

It is important to obtain exact or numerical solu-
tions in many fields of sciences and engineering, espe-
cially solid state physics, fluid mechanics, and plasma
physics. Such as in plasma physics, the dusty plasmas
are the interest of study since they exist in the uni-
verse almost everywhere. As a result nonlinear studies
are strongly encouraging. For this reason, the nonlin-
ear propagation of dust-ion-acoustic waves in an un-
magnetized dust plasma was studied by considering a
non-planar spherical geometry [13 — 16] for the KP and
for the cylindrical KP model [17]. Another hierarchy of

the KP model is called the JM model [12]. Because it
is difficult or sometimes impossible to obtain an exact
solution for these highly nonlinear partial differential
equations, a powerful and validated method becomes
very important. An iterative numerical method called
homotopy perturbation method (HPM) was proposed
by He [18] and further developed by him [19-22] for
better accuracy. It yields a fast convergence for most of
the selected problems. It also showed a high accuracy
and a rapid convergence to solutions of the nonlinear
partial differential equations.

Recently, homotopy perturbation technique success-
fully has been applied to (2+1) dimensional coupled
Burgers system by Hizel and Kiigiikarslan [23].

In this current work, a higher dimensional (3+1)
nonlinear evolutionary differential equation will be
considered the first time by using the HPM. Since
the selected equations, the KP and the JM equa-
tions, have analytical solutions, it will be illustra-
tive to see the accuracy and the effectiveness of
the HPM.

2. Homotopy Perturbation Method (HPM)

One considers the following nonlinear differential
equation to represent the procedure of this method:

Au—f(r)=0, reqQ, ()
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with the boundary conditions

B(u,%>—0, rer, @)
on

where A and B are the general differential operator and
the boundary operator, respectively. I is the boundary
of the domain Q, and f(r) is a given analytical func-
tion.

After dividing the general operator into linear part
(L) and nonlinear part (N), one can rewrite (1) as

Lu+Nu— f(r)=0. (3)

By constructing the homotopy technique to (3), one
can write a homotopy in the form

H(v,p) = (1= p)[L(v) = L(uo)] + p[A(v) = f(r)] =0,
pel0,1], reQ, (4)

where p is an embedding parameter and uq an initial
approximation of (1) which satisfies (2).

In the HPM, one can use the embedding parameter
as a small parameter. Therefore, the solution of (4) can
be written as a power series of p in the following form:

v:vo—l—pvl—i—pzvz—l—.... 5

By setting p = 1, one can get an approximate solution
of (1):

uzlimlv:vo—l—vl—i—vz—i—.... (6)
p—)

The combination of a small parameter (perturbation
parameter) with a homotopy is called homotopy per-
turbation method as presented in the final equation (6).

3. Application of the HPM to (3+1) Dimensional
Nonlinear PDE(s)

3.1. The Jumbo-Miwa (JM) Equation
The governing equation for the JM is given by
Uyyxy + Sttty + Sutyltyy + 2uy — 3u; = 0. (7)

The exact solution of (7) was obtained by using the ho-
mogenous balance method [12] in the following form:

u=ap+2kotanh[k(ax+ By+7yz—Ar)], (8)
where k, a, B, y are arbitrary constants with ag = 2ko

and A = 2k%a® — 32%
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By assigningk=1, x =1, y=2, B =3, one obtains
ap=2,A =1, and (8) is simplified to

u=2+2tanhjx+3y+2z—1¢]. )

By choosing for (9) the initial condition uy =
uo(0,y,0,¢) = 2 + 2tanh[3y — ¢], substituting (9)
into (4), and then substituting (5), one gets a system
of equations with n+ 1 terms which need to be solved
simultaneously. Since computations are dependent on
the value of up, a minor modification gives flexibility
to choose the initial ug. For this purpose, the following
homotopy is constructed as Refai et al. [24] propose:

(1= p)(Bvie — 3uoxc)

(10)
+ P(—Varry — 3V — 3V — 20y + 3vy) = 0.

After expanding (10) for n = 3, i.e. the third power
of p, one obtains

0. _
P Voxz = UOxzs
JZ 3V1xz — Voxxxy — 2V0yt - 3V0xyV0x - 3VOyVOxx =0,
P72 3Va — Viey — 2Viye — 3VoxyVix — 3VixnyVox
(11)
- 3V1yVOx - 3V1xxV0y =0,
P~ 2 3V3 — Vaxrey — 22y — 3VoxyVax — 3VigVix

— 3V0xv2xy — 3V0yv2xx - 3v1yv1xx — 3V2yV0xx =0.
The solution of (11) can be obtained as:
vg =24 2tanh(3y —1),
vy = —8xzsech?(r — 3y) tanh(r — 3y),
vy = 4x’z%sech’ (t — 3y) (sinh(3r — 9y)
— 11sinh(r — 3y)),

—16 1
Vs = _13{—)53 [123+cosh(4t —12y) (12)

3 3
—56c¢osh(2t — 6y)
— 18x(— 3+ cosh(2r — 6y))} }
- sech®(r — 3y) tanh(z — 3y).

By substituting these values into (6), one can get an
approximation to u:

u=vo+vi+va+vy=
2+ 2tanh(3y — ) — 8xzsech? (r — 3y) tanh(z — 3y)
+4x’z?sech’ (1 — 3y)[sinh(3r — 9y) — 11sinh(z — 3y)]
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In Figure 1, the exact solution of u(x,y,z,t) for the
intervals 0 <y<land0 <t <landforx=0,z=0
is plotted. The approximated solution of u(x,y,z,t) is
plotted for the first four terms in Figure 2 in the same
interval.
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Fig. 1. Exact solution of u(0,y,0,z) for
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Fig. 2. HPM solution of u(0,y,0,¢
vo+vi+va+v3for0<y<1and
t<1.

) =
0<

3.2. The Kadomstev-Petviashvili (KP) Equation
The governing equation for the KP is given by
(14)

2
Uyy + OUY + OUUy — Usrxx — Uyy — Uz = 0.

The exact solution of (14) was obtained by using the
homogenous balance method [12] by the following
—4k%a? | 2k’

form:
”_< 3 3 >

+ 2k* & tanh® [k(otx + By + yz — At)],

(15)
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where k, o, B, y are arbitrary constants with A =
2 22

w. By assigningk=1,0=1,y=1, and

B =1, one obtains A = 2 and (15) is simplified to

u=—2/3+2tanh?[x +y+z—21]. (16)
By selecting an initial ug for z = 0, one obtains

uo = uop(x,y,0,¢) = —2/3+2tanh2[x+y—2t]. (17)

By following the same procedure as in the JM case,
one can construct the homotopy in the form

(1 - P)(sz - ”0zz)

5 (18)
+ P(=Vi — 6VF — 60y + Vg + Vyy +v22) = 0.

After expanding (18) for n = 2, i.e. the second power

z 6.5
6

a4
ya 6. 8
/
/6.6
/6.4 ¢
6.2
Fig. 3. Exact solution of u(0,0,z,¢) for
5<z<7and6<t<7.
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Fig. 4. HPM solution of u(0,0,z,¢) =
vo+vi+vy+v3+vg for 5 <z<7and
6<tr<7.

of p, one obtains

P V0zz = U0z,

. 2 _
D Vigt Voyy + Voo — Voxr — 6V0x - 6V0xxV0 =0,
P V2zz+vlyy+lexxx_let - 12V0xle_6V0xxV1

—6Vivo =0. (19)

The solution of (19) can be obtained as:
-2 2
Vo= + 2tanh” (x +y — 2f),
v = 2z2{ —2+cosh[4t —2(x+y)] }sech4(2t —x—y),
vy = ;—iz“{ 1960 + cosh[127 — 6(x +y)] (20)

+ 168 cosh[8: — 4(x +y)]
+ 1905 cosh[4r —2(x + )] }sech8 (2t—x—y).
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By substituting these values into (6), one can get an
approximation for u:

U=Zvyg+vi+vy =
2
~3 +2tanh2(x+y—2t)
+222{ — 2+ cosh[4t — 2(x +y)] bsech* (2t — x — y)

1 21
% #1960 + cosh(12¢ — 6(x+ )] b

+ 168 cosh(8r — 4(x +y)))sech8(2t —x—y)
1
— 5721905 cosh[4r —2(x+y)] }sech® (2 —x — ).

In Figure 3, the exact distribution of u(x,y,z,t) in
the intervals 5 <z<7and 6 <r<7aswellasx=0
and y = 0 is plotted. The approximated distribution of
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Fig. 6. HPM solution of u(0,y,0.5,r) &
vo+vi+vo+v3+vgfor2.3 <y<3and
3<r <.

u(x,y,z,t) is plotted for the first five terms in Figure 4
in the same intervals.

In Figure 5, the exact distribution of u(x,y,z,¢) in
the intervals 2.3 <y<3and3<r<7aswellasx=0
and z =0.5 is plotted. The approximated distribution of
u(x,y,z,t) is plotted for the first five terms in Figure 6
in the same intervals.

In Figure 7, the exact distribution of u(x,y,z,t) in
the intervals 2.3 <x<3and0<tr<laswellasy=3
and z =0.5 is plotted. The approximated distribution of
u(x,y,z,t) is plotted for the first five terms in Figure 8
in the same intervals.

4. Conclusions

In this paper, an iterative numerical solution of a
physically interesting problem of the higher dimen-
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sional (3+1) evolutionary nonlinear partial differential  the physics of dusty plasmas, dust-ion-acoustic waves
equations, the KP and the JM equations, was studied by  for industrial and physical applications. It can be con-
using the homotopy perturbation method and the ob- cluded that He’s HPM gives a very good approxima-
tained results were compared with the available exact tion and a fast convergence to the (3+1) dimensional
solutions. These solutions will be helpful to understand  nonlinear PDEs.
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