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In the present analysis, we have modeled the governing equations of a two dimensional hyperbolic
tangent fluid model. Using the assumption of long wavelength and low Reynolds number, the gov-
erning equations of hyperbolic tangent fluid for an asymmetric channel have been solved using the
regular perturbation method. The expression for pressure rise has been calculated using numerical
integrations. At the end, various physical parameters have been shown pictorially. It is found that the
narrow part of the channel requires a large pressure gradient, also in the narrow part the pressure
gradient decreases with the increase in Weissenberg number We and channel width d.
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1. Introduction

Peristaltic transport is a well known process of a
fluid transport which is induced by a progressive wave
of area contraction or expansion along the length of
distensible tube containing the fluid. It is used by many
systems in the living body to propel or to mix the con-
tents of a tube. The peristalsis mechanism usually oc-
cur in urine transport from kidney to bladder, swal-
lowing food through the esophagus, chyme motion in
the gastrointestinal tract, vasomotion of small blood
vessels and movement of spermatozoa in the human
reproductive tract. There are many engineering pro-
cesses as well in which peristaltic pumps are used to
handle a wide range of fluids particularly in chemical
and pharmaceutical industries. It is also used in san-
itary fluid transport, blood pumps in heart lung ma-
chine, and transport of corrosive fluids, where the con-
tact of the fluid with the machinery parts is prohibited.
Because most of the physiological fluids behave like a
non-Newtonian fluid, therefore, some interesting stud-
ies dealing with the flows of non-Newtonian fluids are
given in [1 – 15].

Motivated by possible applications in industry and
physiology and previous studies regarding the peri-
staltic flows of Non-Newtonian fluid models, we dis-
cussed the tangent hyperbolic fluid model. The gov-
erning equations of hyperbolic tangent fluid model for
peristaltic fluid flow in a two dimensional asymmet-
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ric channel has been modeled in the present paper. To
the best of the authors knowledge no attempt has been
made to study the hyperbolic tangent fluid model for
peristaltic problems. The governing equations are re-
duced using long wave length approximation and then
the reduced problem has been solved by the regular
perturbation method. The expression for pressure rise
is computed numerically using mathematics software
Mathematica. At the end, the graphical results are pre-
sented to discuss the physical behaviour of various pa-
rameters of interest.

2. Fluid Model

For an incompressible fluid the balance of mass and
momentum are given by

divVVV = 0, (1)

ρ
dVVV
dt

= divS+ ρf, (2)

where ρ is the density, VVV is the velocity vector, S is
the Cauchy stress tensor, f represents the specific body
force and d/dt represents the material time derivative.
The constitutive equation for hyperbolic tangent fluid
is given by [10 – 11]

S = −PI+τττ, (3)

τττ = −[η∞ +(η0 + η∞) tanh(Γ ¯̇γ)n] ¯̇γ, (4)
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in which −PI is the spherical part of the stress due
to constraint of incompressibility, τττ is the extra stress
tensor, η∞ is the infinite shear rate viscosity, η0 is the
zero shear rate viscosity, Γ is the time constant, n is the
power law index, and ¯̇γ is defined as

¯̇γ =

√
1
2 ∑

i
∑

j

¯̇γi j ¯̇γ ji =

√
1
2

ΠΠΠ , (5)

where ΠΠΠ = 1
2 trac

(
gradVVV +(gradVVV )T

)2
.

Here ΠΠΠ is the second invariant strain tensor. We con-
sider constitution (4), the case for which η∞ = 0 and
Γ ¯̇γ < 1. The component of extra stress tensor, there-
fore, can be written as

τ̄ = −η0[(Γ ¯̇γ)n] ¯̇γ = −η0[(1 +Γ ¯̇γ −1)n] ¯̇γ
= −η0[1 + n(Γ ¯̇γ −1)] ¯̇γ.

(6)

3. Mathematical Formulation

Let us consider the peristaltic transport of an incom-
pressible hyperbolic tangent fluid in a two dimensional
channel of width d̄1 + d̄2. The flow is generated by si-
nusoidal wave trains propagating with constant speed c
along the channel walls. The geometry of the wall sur-
face is defined as

Y = H1 = d̄1 + ā1 cos
[

2π
λ

(X̄ − ct̄)
]
,

Y = H2 = −d̄2 − b̄1 cos
[

2π
λ

(X̄ − ct̄)+ φ
]
,

(7)

where ā1 and b̄1 are the amplitudes of the waves, λ is
the wave length, d̄1 + d̄2 is the width of the channel,
c is the velocity of propagation, t̄ is the time, and X̄
is the direction of wave propagation. The phase differ-
ence φ varies in the range 0 ≤ φ ≤ π in which φ = 0
corresponds to a symmetric channel with waves out of
phase and φ = π , the waves are in phase, further, ā1,
b̄1, d̄1, d̄2, and φ satisfies the condition

ā2
1 + b̄2

1 + 2ā1b̄1 cosφ ≤ (d̄1 + d̄2)2.

The equations governing the flow of a tangent hyper-
bolic fluid are given by

∂Ū
∂X̄

+
∂V̄
∂Ȳ

= 0, (8)

ρ
(

∂Ū
∂t̄

+Ū
∂Ū
∂X̄

+V̄
∂Ū
∂Ȳ

)
=− ∂P̄

∂X̄
− ∂τ̄X̄X̄

∂X̄
− ∂τ̄X̄Ȳ

∂Ȳ
, (9)

ρ
(

∂V̄
∂t̄

+Ū
∂V̄
∂X̄

+V̄
∂V̄
∂Ȳ

)
=−∂P̄

∂Ȳ
− ∂τ̄X̄Ȳ

∂X̄
− ∂τ̄ȲȲ

∂Ȳ
. (10)

We introduce a wave frame (x̄, ȳ) moving with ve-
locity c away from the fixed frame (X̄ ,Ȳ ) by the trans-
formation

x̄ = X̄ − ct̄, ȳ = Ȳ , ū = Ū − c,

v̄ = V̄ , and p̄(x) = P̄(X , t).
(11)

Further, we define

x =
x̄
λ

, y =
ȳ
d1

, u =
ū
c
, t =

c
λ

t̄,

h1 =
h̄1

d̄1
, h2 =

h̄2

d̄1
, τxx =

λ
η0c

τ̄x̄x,

τxy =
d̄1

η0c
τ̄x̄ȳ, τyy =

d̄1

η0c
τ̄ȳȳ, δ =

d̄1

λ
,

Re =
ρcd̄1

η0
, We =

Γ c
d1

, P =
d̄2

1
cλ η0

p̄,

γ̇ =
¯̇γ d̄1

c
.

(12)

Using the above non-dimensional quantities and the re-
sulting equations in terms of stream function Ψ (u =
∂Ψ
∂y

, v = −δ ∂Ψ
∂x

), (9) and (10) can be written as

δRe
[(

∂Ψ
∂y

∂
∂x

− ∂Ψ
∂x

∂
∂y

)
∂Ψ
∂y

]

= −∂P
∂x

− δ 2 ∂τxx

∂x
− ∂τxy

∂y
,

(13)

δ 3Re
[(

∂Ψ
∂y

∂
∂x

− ∂Ψ
∂x

∂
∂y

)
∂Ψ
∂x

]

= −∂P
∂y

− δ 2 ∂τxy

∂x
− δ

∂τyy

∂y
,

(14)

where

τxx = −2[1 + n(Weγ̇−1)]
∂2Ψ
∂x∂y

,

τxy = −[1 + n(Weγ̇ −1)]
(

∂2Ψ
∂y2 − δ 2 ∂2Ψ

∂x2

)
,

τyy = 2δ [1 + n(Weγ̇ −1)]
∂2Ψ
∂x∂y

,

γ̇ =
[

2δ 2
(

∂2Ψ
∂x∂y

)2

+
(

∂2Ψ
∂y2 − δ 2 ∂2Ψ

∂x2

)2

+ 2δ 2
(

∂2Ψ
∂x∂y

)2]1/2

,
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in which δ , Re, We represent the wave, Reynolds, and
Weissenberg numbers, respectively. Under the assump-
tions of long wavelength δ � 1 and low Reynolds
number, and neglecting the terms of order δ and
higher, (13) and (14) take the form

∂P
∂x

=
∂
∂y

[
1 + n

(
We

∂2Ψ
∂y2 −1

)]
∂2Ψ
∂y2 , (15)

∂P
∂y

= 0. (16)

Elimination of pressure from (15) and (16) yield

∂2

∂y2

[
1 + n

(
We

∂2Ψ
∂y2 −1

)]
∂2Ψ
∂y2 = 0. (17)

The dimensionless mean flow Θ is defined by [2]

Θ = F + 1 + d, (18)

in which

F =
∫ h1(x)

h2(x)

∂Ψ
∂y

dy = Ψ(h1(x))−Ψ (h2(x)), (19)

h1(x) = 1 + acos2πx,
h2(x) = −d−bcos(2πx + φ).

(20)

The boundary conditions in terms of stream functionΨ
are defined as:

Ψ =
F
2

,
∂Ψ
∂y

= −1 for y = h1(x),

Ψ = −F
2

,
∂Ψ
∂y

= −1 for y = h2(x),
(21)

where a, b, φ , and d satisfy the following relation:

a2 + b2 + 2abcosφ ≤ (1 + d)2.

4. Perturbation Solution

For the perturbation solution, we expand Ψ , F ,
and P as

Ψ = Ψ0 +WeΨ1 + O(We2), (22)

F = F0 +WeF1 + O(We2), (23)

P = P0 +WeP1 + O(We2). (24)

Substituting above expressions in (15), (17), and (21)
and collecting the powers of We, we obtain the follow-
ing systems:

4.1. System of Order We0

∂4Ψ0

∂y4 = 0, (25)

∂P0

∂x
= (1−n)

∂3Ψ0

∂y3 , (26)

Ψ0 =
F0

2
,

∂Ψ0

∂y
= −1 on y = h1(x), (27)

Ψ0 = −F0

2
,

∂Ψ0

∂y
= −1 on y = h2(x). (28)

4.2. System of Order We1

∂4Ψ1

∂y4 =
n

n−1
∂2

∂y2

(
∂2Ψ0

∂y2

)2

, (29)

∂P1

∂x
= (1−n)

∂3Ψ1

∂y3 + n
∂
∂y

(
∂2Ψ0

∂y2

)2

, (30)

Ψ1 =
F1

2
,

∂Ψ1

∂y
= 0 on y = h1(x), (31)

Ψ1 = −F1

2
,

∂Ψ1

∂y
= 0 on y = h2(x). (32)

4.3. Solution for System of Order We0

Solution of (25) satisfying the boundary condi-
tions (27) and (28) can be written as:

Ψ0 =
F0 + h1 −h2

(h2 −h1)3 (2y3 −3(h1 + h2)y2 + 6h1h2y)

− y +
1

(h2 −h1)3

[(
F0

2
+ h1

)
(h3

2 −3h1h2
2)

−
(

h2 − F0

2

)
(h3

1 −3h2h2
1)
]
.

(33)

The axial pressure gradient at this order is

dP0

dx
=

12(1−n)(F0 + h1 −h2)
(h2 −h1)3 . (34)

For one wavelength the integration of (34) yields

∆Pλ0 =
∫ 1

0

dP0

dx
dx. (35)
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4.4. Solution for System of Order We1

Substituting the zeroth-order solution (33) into (29),
the solution of the resulting problem satisfying the
boundary conditions take the following form:

Ψ1 = C0 +C1y +C2
y2

2!
+C3

y3

3!

+
288n
n−1

[
F0 + h1 −h2

(h2 −h1)3

]2 y4

4!
,

(36)

where

C0 = − 6
(h2 −h1)3

[
F1 − A

4!
(h3

1(2h2 −h1)

− h3
2(2h1 −h2))

][
h1h2

2
2

− h3
2

6

]

− A
3!

(
h2

1h2
2

2
+

h1h3
2

2
− h4

2
4

)
− F1

2
,

C1 =
6h1h2F1

(h2 −h1)3 +
Ah1h2

2

[
(h1 + h2)

3
− 1

2(h2 −h1)3

·
(

h3
1(2h2 −h1)−h2

2(2h1 −h2)
)]

,

C2 =
−6F1(h1 + h2)

(h2 −h1)3 + A
[

(h1 + h2)
4(h2 −h1)3

(
h3

1(2h2 −h1)

− h3
2(2h1 −h2)

)
− h2

1 + h1h2 + h2
2

3!

]
,

C3 =
12

(h2 −h1)3

[
F1 − A

4!

(
h3

1(2h2 −h1)

− h3
2(2h1 −h2)

)]
,

A =
n

n−1
288
[

F0 + h1 −h2

(h2 −h1)3

]2

.

The axial pressure gradient at this order is

dP1

dx
= (1−n)C3−144n(h1+h2)

[
F0 + h1 −h2

(h2 −h1)3

]2

. (37)

For one wavelength the integration of (37) yields

∆Pλ1 =
∫ 1

0

dP1

dx
dx. (38)

Summarizing the perturbation results for small para-
meter We, the expression for stream functions and

pressure gradient can be written as:

Ψ =
F + h1 −h2

(h2 −h1)3

(
2y3 −3(h1 + h2)y2 + 6h1h2y

)

− y +
1

(h2 −h1)3

[(
F
2

+ h1

)
(h3

2 −3h1h2
2)

−
(

h2 − F
2

)
(h3

1 −3h2h2
1)
]

+ We
[

B +Cy + D
y2

2!
+ E

y3

3!
+ A1

y4

4!

]
,

(39)

dP
dx

=
12(1−n)(F + h1 −h2)

(h2 −h1)3

+ We
[
− 12(1−n)

(h2 −h1)3
A1

4!

(
h3

1(2h2 −h1)

−h3
2(2h1 −h2)

)
− 144n(h1 + h2)

(
F + h1 −h2

(h2 −h1)3

)2]
,

(40)

where

B = − 6
(h2 −h1)3

[
A1

4!

(
h3

1(2h2 −h1)−h3
2(2h1 −h2)

)]

·
(

h1h2
2

2
− h3

2
6

)
− A1

3!

(
h2

1h2
2

2
+

h1h3
2

2
− h4

2
4

)
,

C =
A1h1h2

2

[
(h1 + h2)

3
− 1

2(h2 −h1)3

(
h3

1(2h2 −h1)

− h3
2(2h1 −h2)

)]
,

D = A1

[
(h1 + h2)

4(h2 −h1)3

(
h3

1(2h2 −h1)−h3
2(2h1 −h2)

)

− (h2
1 + h1h2 + h2

2)
3!

]
,

E =
12

(h2 −h1)3

[
A1

4!

(
h3

1(2h2−h1)−h3
2(2h1−h2)

)]
,

A1 =
n

n−1
288

[
F + h1 −h2

(h2 −h1)3

]2

.

In the above solution when γ̇ −→ 0 then µ −→ µ0, (or
n = 0) the solutions of Mishra and Rao [16] are a spe-
cial case of our problem.

The non-dimensional pressure rise over one wave-
length ∆Pλ for the axial velocity are

∆Pλ =
∫ 1

0

dP
dx

dx, (41)

where dP/dx is defined in (40).
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Fig. 1. Variation of ∆Pλ with Θ for different values of We at
a = 0.5, b = 0.5, d = 0.4, n = 0.04, and φ = π

6 .

Fig. 2. Variation of ∆Pλ with Θ for different values of φ at
a = 0.5, d = 0.5, We = 0.03, n = 0.04, and b = 0.7.

Fig. 3. Variation of ∆Pλ with Θ for different values of n at
a = 0.5, d = 0.5, We = 0.03, b = 0.7, and φ = π

6 .

Fig. 4. Variation of ∆Pλ with Θ for different values of d at
a = 0.5, b = 0.5, We = 0.03, n = 0.04, and φ = π

4 .

Fig. 5. Variation of ∆Pλ with Θ for different values of a at
b = 0.7, d = 0.7, We = 0.03, n = 0.04, and φ = π

4 .

Fig. 6. Variation of ∆Pλ with Θ for different values of b at
a = 0.5, d = 0.5, We = 0.03, n = 0.04, and φ = π

6 .
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Fig. 7. Variation of dp
dx with x for different values of We at

a = 0.5, b = 0.5, d = 0.2, n = 0.04, Θ = 0.4, and φ = π
2 .

Fig. 8. Variation of dp
dx with x for different values of d at

a = 0.5, b = 0.5, We = 0.03, n = 0.04, Θ = 0.4, and φ = π
2 .

(a) (b)

(c)

Fig. 9. Stream lines for three different values of Q. (a) for
Q = 0.24, (b) for Q = 0.25, (c) for Q = 0.26. The other pa-
rameters are chosen as a = 0.5, b = 0.5, d = 1.0, n = 0.09,
We = 0.04, and φ = 0.01.
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(a) (b)

Fig. 10. Stream lines for two different values of We. (a) for We = 0.4, (b) for We = 0.04. The other parameter are chosen as
a = 0.54, b = 0.5, d = 1.0, n = 0.09, Q = 0.25, and φ = 0.01.

(a) (b)

(c)

Fig. 11. Stream lines for three different values of a. (a) for
a = 0.52, (b) for a = 0.54, (c) for a = 0.56. The other pa-
rameters are chosen as b = 0.5, d = 1.0, Q = 0.3, φ = 0.01,
We = 0.04, and n = 0.09.
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5. Results and Discussion

The analytical solution of the hyperbolic tangent
model is presented. The expression for pressure rise
∆Pλ is calculated numerically using mathematics
software. The effects of various parameters on the
pressure rise ∆Pλ are shown in Figures 1 – 6 for
various values of Weissenberg number We, amplitude
ratio φ , tangent hyperbolic power law index n, channel
width d, and wave amplitudes a, b. It is observed
from Figure 1 that pressure rise decreases for small
values of Θ (0 ≤ Θ ≤ 1.45) with the increase in We
and for large Θ (1.45 ≤ Θ ≤ 2), the pressure rise
increases. We also observe that for different values
of We, there is a linear relation between ∆Pλ and
Θ , i. e., the pressure rise decreases for small Θ and
increases for large Θ . The pressure rise ∆Pλ for
different values of φ are illustrated in Figure 2. It is
shown that ∆Pλ decreases with the increase in φ for
Θ ∈ [0,1.9] and after that ∆Pλ increases. The graphs
of ∆Pλ for different values of power law index n are
presented in Figure 3. It is seen that with the increase
in n, ∆Pλ decreases for Θ ∈ [0,1.6] and for Θ ∈ [1.6,2]
it is increasing. It is observed that the pressure rise
decreases with the increase in d and increases with the
increase in a and b for small Θ and for large Θ , the
results are opposite (see Figs. 4 – 6). Figures 7 and 8
represent that for x ∈ [0,0.2] and [0.6,1] the pressure
gradient is small, we say that the flow can easily
pass without imposition of large pressure gradient,
while in the narrow part of the channel x ∈ [0.2,0.6],
to retain same flux, large pressure gradient is re-
quired. Moreover in the narrow part of the channel,
the pressure gradient decreases with the increase
in We and d.

5.1. Trapping Phenomena

Another interesting phenomena in peristaltic motion
is trapping. It is basically the formation of an internally
circulating bolus of fluid by closed stream lines. This
trapped bolus pushed a head along peristaltic waves.
Figures 9 – 11 illustrate the stream lines for different
values of Q, We, and a. The stream lines for different
values of volume flow rate Q are shown in Figure 9. It
is found that with the increase in volume flow rate Q,
the size and the number of trapping bolus increases.
In Figure 10 the stream lines are prepared for different
value of Weissenberg number We. It is depicted that
the size of the trapped bolus increases with the increase
in We. It is observed from Figure 11 that the size and
the number of the trapping bolus increases with the in-
creases in amplitude of the wave a.

6. Conclusion

In the present paper we have investigated the peri-
staltic flow of tangent hyperbolic fluid in an asym-
metric channel. The governing two dimensional equa-
tions have been modeled and then simplified using
long wave length approximation. The simplified equa-
tions are solved analytically using regular perturbation
method. The results are discussed through graphs. We
conclude the following observations:

1. It is observed that in the peristaltic pumping re-
gion the pressure rise decreases with the increases
in We, φ , n, and d, and increases with the increases
in a and b.

2. The pressure gradient decreases with the in-
creases in both We and d.

3. The size of the trapping bolus increases with the
increases in Q, We and decreases with the increases
in a.
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