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The effects of variable viscosity on the flow and heat transfer in a thin film flow for a third grade
fluid has been discussed. The thin film is considered on the outer side of an infinitely long vertical
cylinder. The governing nonlinear differential equations of momentum and energy are solved analyt-
ically by using homotopy analysis method. The expression for the viscous dissipation and entropy
generation are also defined. The graphical results are presented for various physical parameters ap-
pearing in the problem.
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1. Introduction

Various applications of heat transfer inside thin
films in several industrial manufacturing processes
have led to renewed interest among the researchers.
Some of the typical applications of such flows are
wire and fiber coating, reactor fluidization, polymer
processing, food stuff processing transpiration cool-
ing, microchip production, and lining of mammalian
lungs. Several authors have considered flow inside a
thin film like Siddiqui et al. [1 – 3], Sajid and Hayat [4]
and Hayat and Sajid [5] have discussed the thin film
flows of non-Newtonian fluids.

One of the important aspects in this theoretical study
is the investigation of non-Newtonian fluid with vari-
able viscosity. This is due to the fact that the typical
Navier-Stokes theory becomes insufficient for the de-
scription of some complex rheological fluids such as
shampoo, blood, paints, polymer solutions, and plastic
films. In view of this, Massoudi and Christie [6] inves-
tigated the effects of variable viscosity and the descrip-
tion on the flow of a third grade fluid in a pipe. Using
this idea Pakdermirli and Yilbas [7 – 8] have presented
the analytic solution by using perturbation technique
and also found the entropy generation number for both
constants and Vogel’s model of viscosities.

In all these above mentioned investigations [1 – 8],
the thin film flow with variable viscosity has not been
taken into account. In the present study the thin film
flow of a third grade fluid with variable viscosity in the
presence of a constant pressure gradient is discussed.
An analytic solution is presented using homotopy anal-
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ysis method, a brief overview of the method is given in
references [9 – 23]. At the end the analytical solutions
are discussed graphically. To the best of the author’s
knowledge the thin film flow of third grade fluid with
variable viscosity has not been reported in the literature
until now.

2. Mathematical Formulation

Let us consider an incompressible, thermodynam-
ically compatible, steady third grade fluid with vari-
able viscosity, lying on the outer surface of an in-
finitely long vertical cylinder. The flow is in the form
of thin, uniform axially symmetric film of thickness δ ,
in axially contact with the stationary air. The govern-
ing equation of motion and energy in non-dimensional
form for cylindrical coordinates are [6, 7]
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The corresponding boundary conditions for the thin
film flow are

v(r) = 0, θ (r) = 0 at r = 1, (3)
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= 0 at r = d. (4)
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The first condition being the no-slip condition at r = 1
and the second comes from the stress tensor τrz. In the
above equations the non-dimensionalize variables are
defined as
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where r̄, µ∗, θm, θw, V0, Λ , β2, β3, R, δ are defined
in [7] and g is the constant of gravity.

The Reynold model of viscosity is used to describe
the variation of viscosity with temperature. The non-
dimensional variable of third grade fluid Λ may also
be dependent on the temperature, but for the sake of
simplicity here Λ is treating as constant. The Reynold
model of viscosity is defined as

µ = e−Mθ . (6)

Using the Maclaurin series expansion the above ex-
pression can be written as

µ = 1−Mθ + O(θ 2). (7)

Here M = 0 corresponds to the constant viscosity case.
Using (7) in (1) and (2), we have
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3. Solution by Homotopy Analysis Method

The equations (8) and (9) are the governing non-
linear ordinary differential equation having boundary
conditions given by (3) and (4). We are going to solve
the above boundary value problem with the help of the
homotopy analysis method [9 – 17]. Let

v0(r) =
C
2

(r2 −1)−Cd(r−1), (10)

θ0(r) =
C2Γ
12

((1−d)4 − (r−d)4) (11)

denote the initial guess (for velocity and temperature).
The auxiliary linear operators for velocity and temper-
ature are
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where pε[0,1] is the embedding parameter and h̄v and
h̄θ are auxiliary non-zero operators.

The mth-order deformation equations are

Lv[vm(r)− χmvm−1(r)] = h̄vRv(r), (22)

Lθ [θm(r)− χmθm−1(r)] = h̄θ Rθ (r), (23)
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Fig. 1. h-curve for different values of vari-
able viscosity parameter.
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We now use the symbolic calculation software MATH-
EMATICA and solve the set of linear differential equa-
tion (34) and (35) with conditions up to the first few
orders of approximations. It is found that vm(r) can be
written as

vm(r) =
∞

∑
n=1

am,nr3n+4, m � 0,

θm(r) =
∞

∑
n=1
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(26)

where am,n and bm,n are constants which can be deter-
mined on substituting (26) into (22) and (23).

4. Viscous Dissipation and Entropy Generation

The non-dimensional viscous dissipation and en-
tropy generation can be defined as in [7]
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The non-dimensional entropy generation is defined as

NS =
(

dθ
dr

)2

+Γ θ0

(
dv
dr

)2
[

µ +Λ
(

dv
dr

)2
]

, (28)

where

NS =
S′′′gen

S′′′G
, S′′′G =

k(θm −θw)2

R2θ̄0
2 . (29)

The first term in (28) is due to the heat generation and
the second term is due to the viscous dissipation. We
split Ns into two parts such as

NS = NS1 + NS2, (30)
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With the help of (26) into (27) – (32), these physical
numbers can be easily calculated, which are obvious
results.
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Fig. 2. Velocity profile along the radial distance for different
values of M.

Fig. 3. Temperature profile along the radial distance for dif-
ferent values of M.

5. Graphical Results and Discussion

In this paper, I have presented a third grade fluid ly-
ing on the outer surface of an infinitely long cylinder.
The Reynold model is accounted for temperature de-
pendent viscosity.

Figure 1 is prepared to see the convergence region
for different values of M. It is observed from the fig-
ure that the solution is convergent when −0.3 ≤ h ≤
−0.05. It is also observed that as we increase the value
of M the convergence region becomes smaller, the sim-
ilar effects are seen for the convergence region of Λ ,
but that graph is not shown here to avoid the repeti-
tion. In Figure 2 is plotted the velocity distribution V
against r for different values of M when the film thick-
ness is 2. It is seen from the figure that with the in-
crease in M, the velocity is increasing and a narrow
film is seen. Figure 3 is prepared for the tempera-
ture distribution. The figure shows that with the in-
crease in M the temperature decreases. This happens

Fig. 4. Velocity profile along the radial distance for different
values of Λ .

Fig. 5. Temperature profile along the radial distance for dif-
ferent values of Λ .

Fig. 6. Velocity profile along the radial distance for different
values of Γ .

because when we increase M the viscosity decreases
and decrease of viscosity effects the viscous dissipa-
tion which causes the decrease in temperature. The
effects of Λ on velocity and temperature are shown in
Figures 4 and 5. In this case, with the increase in Λ
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Fig. 7. Temperature profile along the radial distance for dif-
ferent values of Γ .

Fig. 8. Velocity profile along the radial distance for different
values of C.

Fig. 9. Temperature profile along the radial distance for dif-
ferent values of C.

Fig. 10. Velocity profile along the radial distance for different
values of K.

the velocity decreases but the temperature increases.
The effects of Brikmann number Γ are shown in Fig-
ures 6 and 7. It is found that with the increase in Γ ,
both velocity and temperature increases. The effects of
constant pressure gradient on the velocity and temper-
ature can be seen in Figures 8 and 9. It is observed
from the figures that with the increase in C, both the

velocity and temperature increases and gives the max-
imum value at the free surface. The velocity field for
different values of gravitation associated constant K is
illustrated in Figure 10. It is observed that the velocity
field increases with the increase in K and the behaviour
of the velocity is almost similar to that of pressure
drop C.
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