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With the aid of symbolic computation and the extended F-expansion method, we construct more
general types of exact non-travelling wave solutions of the (2+1)-dimensional dispersive long wave
system. These solutions include single and combined Jacobi elliptic function solutions, rational solu-
tions, hyperbolic function solutions, and trigonometric function solutions.
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1. Introduction

It is important to seek for more explicit exact
solutions of nonlinear partial differential equations
(NLPDEs) in mathematical physics. With the help of
symbolic computation software like Maple or Math-
ematica, much work has been focused on the vari-
ous extensions and applications of the known meth-
ods to construct exact solutions of NLPDEs. Mathe-
matical modelling of physical systems often leads to
nonlinear evolution equations (NLEEs). The study of
(2+1)-dimensional NLEEs, or even higher dimensional
NLEEs, has also attracted more attention. There are
many powerful and direct methods to construct the ex-
act solutions of NLPDEs, such as the inverse scattering
transform [1], tanh-function method [2 – 4], the gener-
alized hyperbolic function method [5, 6], Exp-function
method [7], sine/cosine method [8] and so on. Re-
cently, many exact solutions expressed by Jacobi el-
liptic functions (JEFs) of NLEEs have been obtained
by Jacobi elliptic function expansion method [9 – 11],
mapping method [12, 13], F-expansion method [14],
the extended F-expansion method [15], the improved
generalized F-expansion method [16, 17], the gen-
eralized Jacobi elliptic function method [18, 19],
the variable-coefficient F-expansion method [20] and
other methods [21 – 23]. The F-expansion method [14]
is an over-all generalization of Jacobi elliptic function
expansion method. Using many methods [3 – 6, 9 – 11,
14, 15, 22, 23], we can get only the travelling wave so-
lutions. Ren and Zhang [16] and Zhang and Xia [17]
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improved some methods to seek for more types of non-
travelling wave and coefficient function solutions.

In this paper, we consider the (2+1)-dimensional
dispersive long wave (DLW) system

uyt + vxx + uxuy + uuxy = 0,

vt + ux + vux + uvx + uxxy = 0.
(1)

System (1) was first obtained by Boiti et al. [24]
and possesses a Kac-Moody-Virasoro structure [25].
Searching for methods to find more types of exact
solutions of the system (1) is of fundamental in-
terest in fluid dynamics. Some soliton-like solutions
of the (2+1)-dimensional DLW system (1) were ob-
tained in [26, 27]. Recently, some exact solutions of (1)
were constructed by using various methods, including
travelling-wave solutions, soliton-like solutions, peri-
odic wave solutions and Weierstrass function solu-
tions [28 – 33]. A good understanding of the solutions
for system (1) is very helpful to coastal and civil engi-
neers in applying the nonlinear water model to coastal
harbor design. The present work is motivated by the
desire to improve the work made in [28, 29] by propos-
ing a more general ansatz solution, in which the restric-
tion on coefficients being constants are removed, to ob-
tain some new and more general exact solutions of (1)
by using the extended F-expansion method with the
help of symbolic computation. More recently, Zhang
et al. [34] and Bai and Niu [35] derived many types
of exact solutions of system (1) by using different
methods.



M. M. Hassan · Non-Travelling Wave Solutions of the (2+1)-Dimensional DLW System 541

This paper is organized as follows: in Section 2, we
describe the variable-coefficient extended F-expansion
method [15, 20] to construct exact solutions for a sys-
tem of NLPDEs. In Section 3, we apply this method
to the (2+1)-dimensional DLW system (1). We draw
plots to show the properties of some JEF solutions. In
Section 4, we conclude the paper.

2. The Variable-Coefficient Extended F-Expansion
Method

Let us simply describe the variable-coefficient ex-
tended F-expansion method, as follows:

Step 1. Consider a given system of NLPDEs with
independent variables x = (x0 ≡ t,x1,x2, . . . ,xn) and
dependent variables u and v in the form

P(u,v,ut ,uxi ,vxi ,uxix j ,vxix j , . . .) = 0,

Q(u,v,ut ,uxi ,vxi ,uxix j ,vxix j , . . .) = 0,
(2)

where the functions P and Q are polynomial functions
of u,v and their derivatives, and the subscripts denote
partial derivatives. We seek the solutions in the form

u(x) =
n

∑
i=0

(Ai(x)Fi(ξ )+ Bi(x)F−i(ξ )),

v(x) =
M

∑
j=0

(a j(x)F j(ξ )+ b j(x)F− j(ξ )),
(3)

where A0(x), Ai(x), Bi(x), (i = 1, . . . ,n), a0(x), a j(x),
b j(x) ( j = 1, . . . ,M) and ξ (x) are all differentiable
functions of x to be determined and F(ξ ) satisfies
the first order nonlinear ordinary differential equation
(ODE)

(F ′(ξ ))2 = q0 + q2F2(ξ )+ q4F4(ξ ), (4)

where q0, q2 and q4 are constants and the prime de-
notes d/dξ .

Step 2. Determine the integer numbers n and M by
balancing the highest-order derivative terms with the
nonlinear terms in system (2).

Step 3. Substituting (3) with (4) into (2), then the
left-hand side of system (2) can be converted into a
polynomial in F(ξ ). Setting each coefficient to zero to
derive a system of PDEs for A0(x), Ai(x), Bi(x), a0(x),
a j(x), b j(x), and ξ (x).

Table 1. The ordinary differential equation and Jacobi elliptic
functions. Relation between values of (q0, q2, q4) and corre-
sponding F(ξ ) in ODE

(F ′)2 = q0 +q2F2 +q4F4.

q0 q2 q4 F

1 −1−m2 m2 snξ , cdξ = cnξ
dnξ

1−m2 2m2 −1 −m2 cnξ
m2 −1 2−m2 −1 dnξ

m2 −1−m2 1 nsξ = 1
snξ , dcξ = dnξ

cnξ

−m2 2m2 −1 1−m2 ncξ = 1
cnξ

−1 2−m2 m2 −1 ndξ = 1
dnξ

1 2−m2 1−m2 scξ = snξ
cnξ

1 2m2 −1 −m2(1−m2) sdξ = snξ
dnξ

1−m2 2−m2 1 csξ = cnξ
snξ

−m2(1−m2) 2m2 −1 1 dsξ = dnξ
snξ

1
4

m2−2
2

m4

4
snξ

1±dnξ

m2

4
m2−2

2
m2

4 snξ ± icnξ

Step 4. Solving the system obtained in the above
step by the use of Maple. In order to make the calcu-
lation feasible, we may choose some special forms of
Ai(x), Bi(x), a j(x), b j(x), and ξ (x).

Step 5. Substituting these results into (3) to derive
various solutions of (2) depending on the solutions of
equation (4). Many kinds of JEF solutions of equa-
tion (4) are listed in Table 1.

The JEFs snξ = sn(ξ ,m), cnξ = cn(ξ ,m), and
dnξ = dn(ξ ,m), where m (0 < m < 1) is the modulus
of the elliptic function, are double periodic and posses
the following properties:

sn2ξ + cn2ξ = 1, dn2ξ + m2sn2ξ = 1,

d
dξ

(snξ ) = cnξ dnξ ,
d

dξ
(cnξ ) = −snξ dnξ ,

d
dξ

(dnξ ) = −m2snξ cnξ .

The JEFs degenerate into hyperbolic functions when
m → 1:

snξ → tanhξ , cnξ → sechξ , dnξ → sechξ ,

while the JEFs degenerate into trigonometric functions
when m → 0:

snξ → sinξ , cnξ → cosξ , dnξ → 1.
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Some more properties of JEFs can be found in [36],
notation see Table 1.

3. Exact JEF Solutions of the (2+1)-Dimensional
DLW System

In this section, we obtain new exact JEF solu-
tions of the (2+1)-dimensional DLW system by using
the variable-coefficient extended F-expansion method.
Balancing the highest-order derivative term with the
nonlinear term in system (1) gives n = 1 and M = 2,
so we suppose that equation (1) has the following for-
mal solution:

u(x,y, t) = A0 + A1F(ξ )+ B1F−1(ξ ),

v(x,y, t) = a0 + a1F(ξ )+ a2F2(ξ )

+ b1F−1(ξ )+ b2F−2(ξ ),

(5)

where A0(y, t) ≡ A0, A1(y,t) ≡ A1, B1(y,t) ≡ B1,
a0(y, t) ≡ a0, a1(y,t) ≡ a1, a2(y,t) ≡ a2, b1(y,t) ≡ b1,
b2(y, t)≡ b2, and ξ = xk(y,t)+η(y,t). Substituting (5)
into (1), and equating each of the coefficients of F(ξ )
to zero, we get a set of PDEs for A0, A1, B1, a0, a1,
a2, b1, b2 and ξ . Solving the set of PDEs by the use of
Maple, we have

Case 1:

B1 = a1 = b1 = b2 = 0, k(y,t) = C1,

A0(y, t) = − 1
C1

d f 3(t)
dt

, A1 = ±2
√

q4C1,

η(y, t) = −
∫ (1 + f1(y))dy

q2C1
+ f3(t),

a0 = f1(y), a2 = 2q4(1 + f1(y))/q2. (6)

Case 2:

A1 = a1 = b1 = a2 = 0, k(y,t) = C1,

B1 = ±2
√

q0C1, A0 = − 1
C1

d f 3

dt
,

a0 = f1(y), b2 = 2q0(1 + f1(y))/q2,

η(y, t) = −
∫ (1 + f1(y))dy

q2C1
+ f3(t). (7)

Case 3:

a1 = b1 = 0, A0 = − 1
C1

d f 2(t)
dt

,

A1 = ±2C1
√

q4, B1 = −A1

√
q0

q4
,

a0 = f1(y), a2 =
2(1 + f1(y))q4

q2 + 2
√

q0
√

q4
,

b2 =
q0

q4
a2, k(y, t) = C1,

η(y, t) = −
∫ (1 + f1(y))dy

(q2 + 2
√

q0
√

q4)C1
+ f2(t). (8)

Case 4:

a1 = b1 = 0, A0 = − 1
C2

d f 3(t)
dt

,

A1 = ±2C2
√

q4, B1 = A1

√
q0

q4
,

a0 = f1(y), a2 =
2(1 + f1(y))q4

q2 −2
√

q0
√

q4
,

b2 =
q0

q4
a2, k(y, t) = C2,

η(y, t) = −
∫ (1 + f1(y))dy

(q2 −2
√

q0
√

q4)C2
+ f3(t). (9)

Case 5:

a1 = b1 = 0, A0 = − 1
C2

d f 1(t)
dt

,

A1 = ±2C2
√

q4, B1 = −A1

√
q0

q4
,

a0 = C1, a2 =
2(1 +C1)q4

q2 + 2
√

q0
√

q4
,

b2 =
q0

q4
a2, k(y, t) = C2,

η(y, t) =
−(1 +C1)y

(q2 + 2
√

q0
√

q4)C2
+ f1(t). (10)

Case 6:

a1 = b1 = 0, A0 = − 1
C3

d f 2(t)
dt

,

A1 = ±2C3
√

q4, B1 = A1

√
q0

q4
,

a0 = C1, a2 =
2(1 +C1)q4

q2 −2
√

q0
√

q4
,

b2 =
q0

q4
a2, k(y, t) = C3,

η(y, t) =
−(1 +C1)y

(q2 −2
√

q0
√

q4)C3
+ f2(t). (11)
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f1(y), f1(t), f2(t), f3(t) are arbitrary functions and C1,
C2, C3 are arbitrary constants.

Substituting Cases 1 – 6 into (5), we get the follow-
ing formulas for the solutions of the (2+1)-dimensional
DLW system:

u = − 1
C1

d f 3(t)
dt

±2
√

q4C1F(ξ ),

v = f1(y)+ 2
q4(1 + f1(y))

q2
F2(ξ ),

ξ = xC1 −
∫ (1 + f1(y))dy

q2C1
+ f3(t), (12)

u = − 1
C1

d f 3

dt
±2

√
q0C1F−1(ξ ),

v = f1(y)+ 2
q0(1 + f1(y))

q2
F−2(ξ ),

ξ = xC1 −
∫ (1 + f1(y))dy

q2C1
+ f3(t), (13)

u = − 1
C1

d f 2(t)
dt

±2C1[
√

q4F(ξ )−√
q0F−1(ξ )],

v = f1(y)+
2(1 + f1(y))

q2 + 2
√

q0
√

q4
[q4F2(ξ )+ q0F−2(ξ )],

ξ = xC1 −
∫ (1 + f1(y))dy

(q2 + 2
√

q0
√

q4)C1
+ f2(t), (14)

u = − 1
C2

d f 3(t)
dt

±2C2[
√

q4F(ξ )+
√

q0F−1(ξ )],

v = f1(y)+
2(1 + f1(y))

q2 −2
√

q0
√

q4
[q4F2(ξ )+ q0F−2(ξ )],

ξ = xC2 −
∫ (1 + f1(y))dy

(q2 −2
√

q0
√

q4)C2
+ f3(t), (15)

u = − 1
C2

d f 1(t)
dt

±2C2[
√

q4F(ξ )−√
q0F−1(ξ )],

v = C1 +
2(1 +C1)

q2 + 2
√

q0
√

q4
[q4F2(ξ )+ q0F−2(ξ )],

ξ = xC2 − (1 +C1)y
(q2 + 2

√
q0
√

q4)C2
+ f1(t), (16)

u = − 1
C3

d f 2(t)
dt

±2C3[
√

q4F(ξ )+
√

q0F−1(ξ )],

v = C1 +
2(1 +C1)

q2 −2
√

q0
√

q4
[q4F2(ξ )+ q0F−2(ξ )],

ξ = xC3 − (1 +C1)y
(q2 −2

√
q0
√

q4)C3
+ f2(t). (17)

With the aid of the variable-coefficient extended F-
expansion method and the formulas (12) – (17), we can

obtain the exact solutions of (1) in terms of JEFs. Se-
lecting the values of q0, q2, q4 and the correspond-
ing function F and inserting them into equations (12)
and (13), we can construct the following periodic wave
solutions of the (2+1)-dimensional DLW system:

u1 = − 1
C1

d f 3(t)
dt

±2mC1snξ ,

v1 = f1(y)− 2m2(1 + f1(y))
(1 + m2)

sn2ξ ,

u2 = − 1
C1

d f 3(t)
dt

±2mC1cdξ ,

v2 = f1(y)− 2m2(1 + f1(y))
(1 + m2)

cd2ξ ,

ξ = xC1 +
∫ [1 + f1(y)]dy

(1 + m2)C1
+ f3(t), (18)

u3 = − 1
C1

d f 3(t)
dt

±2imC1cnξ ,

v3 = f1(y)− 2m2(1 + f1(y))
(2m2 −1)

cn2ξ ,

u4 = − 1
C1

d f 3(t)
dt

±2
√

1−m2C1ncξ ,

v4 = f1(y)+
2(1−m2)(1 + f1(y))

(2m2 −1)
nc2ξ ,

ξ = xC1 −
∫ [1 + f1(y)]dy

(2m2 −1)C1
+ f3(t), (19)

u5 = − 1
C1

d f 3(t)
dt

±2iC1dnξ ,

v5 = f1(y)− 2[1 + f1(y)]
(2−m2)

dn2ξ ,

u6 = − 1
C1

d f 3(t)
dt

±2i
√

1−m2C1ndξ ,

v6 = f1(y)− 2(1−m2)(1 + f1(y))
(2−m2)

nd2ξ ,

ξ = xC1 −
∫ [1 + f1(y)]dy

(2−m2)C1
+ f3(t), (20)

u7 = − 1
C1

d f 3(t)
dt

±2C1

√
1−m2scξ ,

v7 = f1(y)+
2(1−m2)[1 + f1(y)]

(2−m2)
sc2ξ ,

u8 = − 1
C1

d f 3(t)
dt

±2C1csξ ,
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(a) u1 (b) v1

Fig. 1. Evolution plots of u1 and v1 in (18) with m = 0.6, C1 = 1, f1(y) = tanh(y), f3(t) = tanh(t), t = 1.

(a) u1 (b) v1

Fig. 2. Evolution plots of u1 and v1 with m = 0.6, C1 = 1, f1(y) = tanh(y), f3(t) = sn(t,0.5), t = 1.

(a) u1 (b) v1

Fig. 3. Evolution plots of u1 and v1 with m = 0.6, C1 = 1, f1(y) = sin(y), f3(t) = sn(t,0.5) at t = 1.
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(a) u1 at y = 1 (b) v1 at y = 1

(c) u1 at t = 1 (d) v1 at t = 1

Fig. 4. The solution (u1,v1) of (18) at y = 1 with m = 0.6, C1 = 1, f1(y) = tanh(y), f3(t) = tanh(t) and its position at t = 1.

v8 = f1(y)+
2(1 + f1(y))

(2−m2)
cs2ξ ,

ξ = xC1 −
∫ [1 + f1(y)]dy

(2−m2)C1
+ f3(t). (21)

We plotted the solution (u1,v1) of (18) to show
the dynamics of the Jacobi elliptic wave solutions.
The particular case of f1(y) = tanh(y), f3(t) = tanh(t),
and “+” in each sign “±”, see Figure 1. Moreover,
we plotted (u1,v1) with various functions of f1(y) and
f3(t) see Figures 2, 3. Figures 1 – 3 show the evolu-
tion plots of the solution (u1,v1). Then we can obtain
various features of wave solutions depicted in Figures
1 – 3 by selecting arbitrary functions. In Figures 4 – 6
we plotted the periodic wave solution given by (u1,v1)
at y = 1 and their positions at t = 1 with m = 0.6 and
C1 = 1.

Selecting q0 = 1/4, q2 = (m2−2)/2, q4 = m4/4, we
obtain

u9 = − 1
C1

d f 3(t)
dt

±m2C1

(
snξ

1±dnξ

)
,

v9 = f1(y)− m4[1 + f1(y)]
2−m2

[
snξ

1±dnξ

]2

,

u10 = − 1
C1

d f 3(t)
dt

±C1

(
1±dnξ

snξ

)
,

v10 = f1(y)− (1 + f1(y))
2−m2

[
1±dnξ

snξ

]2

,

ξ = xC1 + 2
∫ [1 + f1(y)]dy

(2−m2)C1
+ f3(t). (22)

We plotted the solution (u9,v9) to show the evo-
lution plots of solution. In Figure 7 we choose var-
ious functions f1(y) and f3(t) and take “+” in each
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(a) u1 at y = 1 (b) v1 at y = 1

(c) u1 at t = 1 (d) v1 at t = 1

Fig. 5. The solution (u1,v1) of (18) at y = 1 with m = 0.6, C1 = 1, f1(y) = sin(y), f3(t) = tanh(t) and its position at t = 1.

sign “±”. We see that the solutions are affected by the
selections of these functions. Then we can obtain many
types of wave solutions as depicted in Figure 7. Also
we plotted (u9,v9) at y = 1 and their positions at t = 1
with various functions f1(y) and f3(t) and m = 0.6,
C1 = 1 (see Figs. 8 – 9).

Selecting the values of q0, q2, q4, and the corre-
sponding function F and inserting them into equations
(14) – (17), we can construct the following combined
JEF solutions of (2+1)-dimensional DLW system:

u11 = − 1
C1

d f 2(t)
dt

±2C1(msnξ −nsξ ),

v11 = f1(y)− 2(1 + f1(y))
(1−m)2

[
m2sn2ξ + ns2ξ

]
,

ξ = xC1 +
∫ [1 + f1(y)]dy

(1−m)2C1
+ f2(t), (23)

u12 = − 1
C2

d f 3(t)
dt

±2C2(msnξ + nsξ ),

v12 = f1(y)− 2(1 + f1(y))
(1 + m)2

[
m2sn2ξ + ns2ξ

]
,

ξ = xC2 +
∫ [1 + f1(y)]dy

(1 + m)2C2
+ f3(t), (24)

u13 = − 1
C1

d f 3(t)
dt

±2iC1(dnξ −
√

1−m2ndξ ),

v13 = f1(y)− 2(1 + f1(y))
(2−m2 −2

√
1−m2)

· [dn2ξ +(1−m2)nd2ξ ],

ξ = xC1 −
∫ [1 + f1(y)]dy

(2−m2−2
√

1−m2)C1
+ f3(t), (25)

u14 = − 1
C2

d f 2(t)
dt

±2iC2(dnξ +
√

1−m2ndξ ),

v14 = f1(y)− 2(1 + f1(y))
(2−m2 + 2

√
1−m2)

· [dn2ξ +(1−m2)nd2ξ ],
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(a) u1 at y = 1 (b) v1 at y = 1

(c) u1 at t = 1 (d) v1 at t = 1

Fig. 6. The solution (u1,v1) of (18) at y = 1 with m = 0.6, C1 = 1, f1(y) = tanh(y), f3(t) = sn(t,0.5) and its position at t = 1.

ξ = xC2 −
∫ [1 + f1(y)]dy

(2−m2 + 2
√

1−m2)C2
+ f2(t), (26)

u15 = − 1
C1

d f 2(t)
dt

±C1

(
m2snξ

1±dnξ
− 1±dnξ

snξ

)
,

v15 = f1(y)− [1 + f1(y)]
2(1−m2)

·
[
(

m2snξ
1±dnξ

)2 +(
1±dnξ

snξ
)2

]
,

ξ = xC1 +
∫ [1 + f1(y)]dy

(1−m2)C1
+ f2(t), (27)

u16 = − 1
C2

d f 3(t)
dt

±C2

(
m2snξ

1±dnξ
+

1±dnξ
snξ

)
,

v16 = f1(y)− [1 + f1(y)]
2

·
[
(

m2snξ
1±dnξ

)2 +(
1±dnξ

snξ
)2

]
,

ξ = xC2 +
∫ [1 + f1(y)]dy

C2
+ f3(t). (28)

Other JEF solutions are omitted here for simplicity.
When m → 1, we have the hyperbolic function solu-
tions as follows:

u17 = − 1
C1

d f 3(t)
dt

±2C1 tanhξ ,

v17 = f1(y)− (1 + f1(y)) tanh 2ξ ,

ξ = xC1 +
∫ [1 + f1(y)]dy

2C1
+ f3(t), (29)

u18 = − 1
C1

d f 3(t)
dt

±2iC1sechξ ,

v18 = f1(y)−2(1 + f1(y))sech2ξ ,

ξ = xC1 −
∫ (1 + f1(y))dy

C1
+ f3(t), (30)
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. The evolution plots of u9 and v9 in (22) with m = 0.6, C1 = 1, t = 1. (a), (b): f1(y) = tanh(y), f3(t) = tanh(t). (c), (d):
f1(y) = sin(y), f3(t) = sn(t,0.5). (e), (f): f1(y) = y2, f3(t) = t2.
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(a) u9 at y = 1 (b) v9 at y = 1

(c) u9 at y = 1 (d) v9 at y = 1

Fig. 8. The solution (u9,v9) at y = 1 with m = 0.6, C1 = 1, f1(y) = tanh(y), f3(t) = tanh(t) and its position at t = 1.

u19 = − 1
C2

d f 3(t)
dt

±2C2[tanhξ + cothξ ],

v19 = f1(y)− 1
2
(1 + f1(y))[tanh2 ξ + coth2 ξ ],

ξ = xC2 +
∫ [1 + f1(y)]dy

4C2
+ f3(t), (31)

u20 = − 1
C1

d f 3(t)
dt

±C1

(
tanhξ

1 + sechξ

)
,

v20 = f1(y)− (1 + f1(y))
(

tanhξ
1 + sechξ

)2

,

ξ = xC1 + 2
∫ [1 + f1(y)]dy

C1
+ f3(t). (32)

u21 = − 1
C2

d f 3(t)
dt

±C2

(
tanhξ

1± sechξ
+

1± sechξ
tanhξ

)
,

v21 = f1(y)− [1 + f1(y)]
2

·
[
(

tanhξ
1± sechξ

)2 +(
1± sechξ

tanhξ
)2

]
,

ξ = xC2 +
∫ [1 + f1(y)]dy

C2
+ f3(t). (33)

We used the solution (u15,v15) in (27) to show
the evolution plots (see Figs. 10 – 11). When m → 0,
we can also obtain trigonometric function solutions
of the system (1), we omit them here for simplicity.
The solutions (30) and (31) are coincide with the re-
sults obtained in [27] and solutions (19) and (29) are
found in [28]. Compared with the solutions obtained
in [27, 28], here we further get many other exact solu-
tions of (1). To show the properties of the solutions of
the (2+1)-dimensional DLW system, we take the solu-
tions (18), (22) and (27) as illustrative examples and
show their plots (see Figs. 1 – 11).

4. Conclusion

The variable-coefficient extended F-expansion
method have been used to construct more types of
exact solutions of the (2+1)-dimensional DLW system.
We have obtained many new solutions including
single and combined JEFs, rational solutions, hyper-
bolic function solutions, and trigonometric function
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(a) u9 at y = 1 (b) v9 at y = 1

(c) u9 at y = 1 (d) v9 at y = 1

Fig. 9. The solution (u9,v9) at y = 1 with m = 0.6, C1 = 1, f1(y) = sin(y), f3(t) = sn(t,0.5) and its position at t = 1.

(a) u15 (b) v15

Fig. 10. Evolution plots of u15 and v15 in (27) with m = 0.6, C1 = 1, f1(y) = tanh(y), f2(t) = tanh(t), t = 1.
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(a) u15 (b) v15

Fig. 11. Evolution plots of u15 and v15 in (27) with m = 0.6, C1 = 1, f1(y) = tanh(y), f2(t) = sn(t,0.5), y = 1.

solutions, each of which contains arbitrary functions
and arbitrary constants. These solutions are more
general than the previous solutions [28, 29] derived
by other methods. The arbitrary functions in the
obtained solutions imply that these solutions have
rich local structures. The obtained solutions, which
are accurate and explicit, may be important to explain
some physical phenomena. We also hope that these
solutions will be useful in further numerical analysis
of solutions of the (2+1)-dimensional DLW system

and will be helpful for a better understanding of the
processes in such a system. The result given in this
work shows that symbolic computations is a powerful
tool in the process of seeking solutions of NLPDEs.
Limit cases are studied and soliton-like solutions
are got. The properties of the solutions of system
(1) have been shown by means of their figures. It is
shown that this method provides a very effective and
powerful mathematical tool for solving many NLEEs
in mathematical physics.
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