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An analysis has been carried out for flow and heat transfer characteristics in a third grade fluid
between two porous plates. The electrically conducting fluid fills the porous medium. The solutions
have been developed for small porosity and magnetic field. Three flow problems are investigated
and analytical expressions for the velocity field and temperature distribution are given for each case.
Moreover, we recover and extend the results of Siddiqui et al. [1] by presenting exact solutions for
the governing equations derived in [1].
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1. Introduction

The flows of non-Newtonian fluids are encountered
in various industrial and technological applications.
Various constitutive equations that can describe such
fluids have been proposed. Several researchers are now
engaged in studying the flow problems of these flu-
ids. Some recent attempts may be mentioned in the
references [2 – 11]. In Siddiqui et al. [1], the authors
studied the heat transfer of a hydrodynamic third or-
der fluid between two parallel plates which are kept
at different temperatures. They looked at constant vis-
cosity and treated three problems, via the plane Cou-
ette flow, plane Poiseuille flow and plane Couette-
Poiseuille flow. For the hydrodynamic fluid and non-
porous medium, the governing differential equations
for velocity and temperature were derived in [1]. The
derived non-linear equation has been solved by the ho-
motopy perturbation method.

Biomagnetic fluid dynamics is currently a new area
of research. It has several applications in bioengineer-
ing and medical sciences. Amongst these is the devel-
opment of magnetic devices for cell separation, tar-
geted transport of drugs using magnetic particles as
drug earriers etc. Blood is an example of a magneto-
hydrodynamic fluid. This is because of complex in-
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teraction of intercellular protein, cell membranes and
hemoglobin. Furthermore blood flow (with shear rate
below 100 s−1) in the coronary arteries represents a
mathematical model of MHD non-Newtonian fluid in a
porous medium. Therefore, in this paper, we extend the
analysis of [1] in two directions (i) to analyze the mag-
netohydrodynamic (MHD) flow and (ii) to consider a
porous medium. An approximate solution of the result-
ing non-linear problem is developed by employing per-
turbation method [12]. The obtained solutions are valid
for small magnetic and porosity parameters. Further-
more, we recover the equations derived by Siddiqui et
al. [1] and obtain the exact solutions whereas in [1]
only approximate solutions were presented.

In the next section, we formulate three problems for
MHD flow in a porous medium. Section 3 contains
the solution procedure. Section 4 includes the discus-
sion of the obtained results. In the same section, the
present solutions are compared with the existing solu-
tions given in [1]. Concluding remarks are mentioned
in Section 5.

2. Mathematical Formulation

The MHD flow in a porous medium is governed
by the continuity equation of motion, energy equation,
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and the Maxwell equations in the form

·V = 0, (1)

ρ
DV
Dt

= J×B+ ·T+ R, (2)

ρcp
Dθ
Dt

= k 2θ+T ·L, (3)

·B = 0, ×B = µmJ, ×E =−∂B
∂t

, (4)

where V is the velocity field, L = gradV, ρ the constant
fluid density, J the current density, B the total magnetic
field, E the total electric field, µm the magnetic perme-
ability, R the Darcy’s resistance, T the stress tensor,
cp the specific heat, k the thermal conductivity, θ the
temperature, and D/Dt the material derivative. Note
that in writing the Maxwell’s equation the displace-
ment current is neglected. By Ohm’s law the expres-
sion of J is

J = σ [E+ V×B], (5)

where σ is the electrical conductivity.
The constitutive equation for a third order fluid is

T = −pI+ µA1 + α1A2 + α2A2
1 + β1A3

+ β2(A1A2 + A2A1)+ β3(trA2
1)A1,

(6)

where p is the fluid pressure, µ the coefficient of vis-
cosity, αi (i = 1,2), β j ( j = 1− 3) the material con-
stants, and Ai (i = 1−3) the Rivlin-Ericksen tensors

A1 = L+ LT , (7)

An =
DAn−1

Dt
+An−1L+LT An−1, n = 2,3. (8)

We now consider the following three problems.

2.1. Plane Couette Flow

As in [1], we first investigate the steady flow of a
third order fluid between two infinite parallel plates
distant 2h apart. The upper and lower plates are at y = h
and y = −h of a rectangular system with the x-axis as
flow direction. The upper plate is assumed to be mov-
ing with constant speed U and the lower kept station-
ary. The temperature of the higher and the lower plates
are θ1 and θ2, respectively. We consider MHD unidi-
rectional flow with zero pressure gradient. A uniform
applied magnetic field B0 acts in the y-direction. The

induced magnetic field is neglected under the assump-
tion of small magnetic Reynolds number. No polariza-
tion effects are included and hence the electric field is
chosen zero. Thus we have θ (y) and

V = [u(y),0,0]. (9)

The above definition of velocity satisfies the continuity
equation. In porous space the momentum and energy
equations yield

µ
d2u
dy2 + 6(β2 + β3)

(
du
dy

)2 d2u
dy2 −σB2

0u

− φ
k1

[
µ + 2(β2 + β3)

(
du
dy

)2
]

u = 0,

(10)

k
d2θ
dy2 + µ

(
du
dy

)2

+2(β2 +β3)
(

du
dy

)4

= 0, (11)

in which the applied magnetic field B0 and porosity φ
are constants. Here k1 is the permeability of the porous
medium. The appropriate conditions are [1]

u(−h) = 0, u(h) = U,

θ (−h) = θ0, θ (h) = θ1.
(12)

Defining

u = Uu∗, y = y∗h, θ ∗ =
θ −θ0

θ1 −θ0
, (13)

(10) and (11) become after omitting the asterisks

d2u
dy2 + 6β

(
du
dy

)2 d2u
dy2 −M2u

− 1
K

[
1 + 2β

(
du
dy

)2
]

u = 0,

(14)

d2θ
dy2 + λ

(
du
dy

)2

+ 2β λ
(

du
dy

)4

= 0, (15)

with the boundary conditions

u(−1) = 0, u(1) = 1,

θ (−1) = 0, θ (1) = 1,
(16)

where

β =
β2 + β3

µ

(
U
h

)2

, M2 =
σB2

0
µ

h2,
1
K

=
φ
k1

h2,

λ =
µU2

k(θ1 −θ0)
=

µcp

k
× U2

cp(θ1 −θ0)
= PrEc, (17)
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in which Pr and Ec are the respective Prandtl and Eckert
numbers and PrEc the Brinkman number. In the limits
M → 0 and K →∞, (14) and (16) reduce to the problem
studied in [1].

2.2. Plane Poiseuille Flow

As in [1], we now look at the situation when both
the plates are stationary and the fluid motion is due
to constant pressure gradient. In this case one directly
obtains after non-dimensionalization:

d2u
dy2 + 6β

(
du
dy

)2 d2u
dy2 −M2u

− 1
K

[
1 + 2β

(
du
dy

)2
]

u = −B,

(18)

d2θ
dy2 + λ

(
du
dy

)2

+ 2β λ
(

du
dy

)4

= 0, (19)

where in addition to (17) we have

B =− h2

µU
d p̂
dx

, p̂ = p− (2α1 +α2)
(

du
dy

)2

(20)

with modified pressure p̂ = p̂(x) and hence B constant.
The boundary conditions here are

u(−1)= 0, u(1)= 0,θ (−1)= 0, θ (1) = 1. (21)

2.3. Plane Couette-Poiseuille Flow

The fluid motion in this final case is by motion of
the upper plate with constant velocity U and pressure
gradient [1]. After scaling, given by (13) and (20) one
has (18), (19) subject to the boundary conditions

u(−1) = 0, u(1) = 1,

θ (−1) = 0, θ (1) = 1.
(22)

In the next section we solve these three problems by the
perturbation expansion approach. However, our base
equation will be retained as non-linear compared to
the linear ones that are normally used. This also en-
ables us to derive the exact solutions for the governing
equations of [1].

3. Solution Procedure of the Problem

We take

M2 = N2ε,
1
K

= ε, (23)

where ε is a small parameter, N2 a constant, and M2 is
of order ε . We are therefore assuming weak magnetic
field and weak porosity. Now let be

u = u0 + εu1 + O(ε2). (24)

We first investigate solutions for section (2.1), i. e.
plane Couette flow. Then (14) becomes for zeroth and
first order in ε

u′′0 + 6β u′20 u′′0 = 0, (25)

u′′1 + 12β u′0u′′0u′1 + 6β u′20 u′′1
−u0(N2 + 1)−2β u′20 u0 = 0,

(26)

where primes denote the derivative with respect to y.
Equation (26) can be written as

d
dy

(u′1(1+6β u′20 )) = u0(N2 +1)+2β u′20 u0. (27)

Equation (25) has first integral

u′0 + 2β u′30 = D, (28)

for D constant. One can solve for u′0 to arrive at

u′0 = 3

√√√√ 1
4β

D+
1

4β

√
D2 +

2
27β

− 3

√√√√− 1
4β

D+
1

4β

√
D2 +

2
27β

,

(29)

which gives

u0 = Ωy + c0, (30)

where Ω is the right side of (29) and c0 a constant of
integration. The first set of boundary conditions of (16)
results in

u0 =
1
2
(y + 1) (31)

with Ω = 1/2. The solution of (27) for u1 subject to

u1(−1) = 0, u1(1) = 0, (32)

then yields

u1 =
N2 + 1

12
(
1 + 3

2 β
)y3 +

β
24

(
1 + 3

2 β
)y3

+
N2 + 1

4
(
1 + 3

2 β
)y2 +

β
8
(
1 + 3

2 β
)y2

+ c1y + c2,

(33)
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where c1 and c2 are

c1 = − N2 + 1
12

(
1 + 3

2 β
) − β

12
(
1 + 3

2 β
) ,

c2 = − N2 + 1
4
(
1 + 3

2 β
) − β

6
(
1 + 3

2 β
) .

(34)

The θ can be obtained by direct integration subject to
the boundary condition (16) (second set) and gives rise
to

θ = M1 + M2y + M3y2 + M4y3

+ M5y4 + M6y5 + M7y6

+ M8y7 + M9y8 + M10y9 + M11y10,

(35)

where the constants M1 − M11 can be calculated
through simple computations.

Next we consider approximate solutions for the
problem in section 2.2, via plane Poiseuille flow.

We first use the rescaling

u = Bu∗, β ∗ = β B2 (36)

to scale B to unity. We again assume a solution of
the form (24). Then the zeroth order equation is now
(set B = 1 and write β instead of β ∗)

u′′0 + 6β u′20 u′′0 = −1. (37)

A first integral of (37) is

u′0 + 2β u′30 + y = D, (38)

with D constant. Equation (38) can be solved for u0 as
follows:

u′0 = 3

√√√√ 1
4β

(−y + D)+
1

4β

√
(−y + D)2 +

2
27β

+ 3

√√√√ 1
4β

(−y + D)− 1
4β

√
(−y + D)2+

2
27β

.

(39)

Under the transformation

y = −y + D, (40)

equation (39) becomes

du0

dy
= − 3

√√√√ 1
4β

y+
1

4β

√
y2 +

2
27β

− 3

√√√√ 1
4β

y− 1
4β

√
y2 +

2
27β

.

(41)

The boundary conditions

u0(−1) = 0, u0(1) = 0

become

u0(1 + D) = 0, u0(−1 + D) = 0.

Since D appears in the boundary condition we can set
D = 0 to get

u0(1) = 0, u0(−1) = 0. (42)

The solution of (39) and (42) is

u0 =
−9y

8(6)
2
3


 3

√√√√√
81y2 + 6

β + 9y

β
−

3

√√√√√
81y2 + 6

β −9y

β




+
1

24(6)
2
3

√
81y2 +

6
β


 3

√√√√√
81y2 + 6

β −9y

β
+

3

√√√√√
81y2 + 6

β + 9y

β




+
9

8(6)
2
3


 3

√√√√√
81+ 6

β + 9

β
−

3

√√√√√
81+ 6

β −9

β


− 1

24(6)
2
3

√
81+

6
β


 3

√√√√√
81+ 6

β + 9

β
+

3

√√√√√
81+ 6

β −9

β


. (43)
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We use (43) in (26) subject to the boundary conditions

u1(−1) = 0, u1(1) = 0. (44)

Since (26) is integrable by quadrature we plot the solutions (24) for different values of the parameters using
Mathematica. We also invoke (19) to find and plot the graphs of θ by setting u = u0 + εu1. Note that in (19)
β is now replaced by β/B2 due to the rescaling (36). These calculations are not explicitly given but they can be
verified easily by Mathematica.

For the problem in section 2.3 we have

u0(−1) = 1, u0(1) = 0, (45)

and therefore

u0 =
9(1− y)

8(6)
2
3


 3

√√√√√
81(1− y)2 + 6

β −9(1− y)

β
−

3

√√√√√
81(1− y)2 + 6

β + 9(1− y)

β




+
1

24(6)
2
3

√
81(1− y)2 +

6
β


 3

√√√√√
81(1− y)2 + 6

β −9(1− y)

β
+

3

√√√√√
81(1− y)2 + 6

β + 9(1− y)

β


− 1

12β
,

(46)

where

9

4(6)
2
3


 3

√√√√√
324 + 6

β −18

β
−

3

√√√√√
324 + 6

β + 18

β




+
1

24(6)
2
3

√
324 +

6
β


 3

√√√√√
324 + 6

β −18

β
+

3

√√√√√
324 + 6

β + 18

β


− 1

12β
= 1. (47)

Then u1 is obtained from (26) with the conditions

u1(1) = 0, u1(−1) = 0. (48)

In the same manner (26) is solvable by quadrature
and we utilize Mathematica to plot solutions of (19)
and (24). We do not present the solutions as they are
lengthy.

4. Results and Discussion

In this section we assign the physical interpretations
to velocity and temperature profiles. For that we first
discuss the expressions of velocity and temperature
profiles for plane Couette flow, plane Poiseuille flow
and plane Couette-Poiseuille flow. For velocity profile

of plane Couette flow, Figure 1 is plotted to examine
the effect of third order parameter β , MHD parame-
ter N, and porosity parameter ε . It is observed that the
velocity increases with an increase in the value of β .
The effects of N and ε on u are similar, that is the ve-
locity decreases by increasing N and ε , respectively.
In Figure 2, we present the effects of N, β , ε , and
Brinkman number λ on the temperature profiles θ . It is
seen that the boundary layer thickness decreases with
the increase of N, β , ε and λ . Figures 3 – 6 show the
variation of velocity and temperature profiles for plane
Poiseuille flow and plane Couette-Poiseuille flow, re-
spectively, when B is equal to one. Here Figures 3 and 4
are for plane Poiseuille flow whereas Figures 5 and 6
are for plane Couette-Poiseuille flow. We observe that
the behavior of the velocity and temperature profiles in
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(a) (b)

(c)

Fig. 1. Effect of the parameters β (a), N (b), ε (c), re-
spectively, on the velocity field u(y) for plane Couette flow
when (a): N = 0.5 and ε = 0.9; (b): β = 0.5 and ε = 0.9;
(c): β = 0.5 and N = 0.9.

(a) (b)

(c) (d)

Fig. 2. Effect of the parameters β (a), N (b), ε (c) and λ (d), respectively, on the temperature field θ (y) for plane Couette flow
when (a): N = 0.5, ε = 0.9 and λ = 1; (b): ε = 0.9 and λ = β = 1; (c); N = 0.5 and λ = β = 1; (d): N = 0.5, ε = 0.9 and
β = 1.
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(a) (b)

(c)

Fig. 3. Effect of the parameters β (a), N (b), and ε (c), re-
spectively, on the velocity field u(y) for plane Poiseuille flow
when (a): N = 0.5 and ε = 0.9; (b): β = 0.5 and ε = 0.9;
(c): β = 0.5 and N = 0.9.

(a) (b)

(c) (d)

Fig. 4. Effect of the parameters β (a), N (b), ε (c), and λ (d), respectively, on the temperature field θ (y) for plane Poiseulle
flow when (a): N = 0.5, ε = 0.9 and λ = 1; (b): ε = 0.9 and λ = β = 1; (c): N = 0.9 and λ = β = 1; (d): N = 0.5, ε = 0.9
and β = 1.
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(a) (b)

(c)

Fig. 5. Effect of the parameters β (a), N (b), and ε (c) on
the velocity field u(y) for plane Couette-Poiseuille flow when
(a): N = 0.5 and ε = 0.9; (b): β = 0.5 and ε = 0.9; (c): β =
0.5 and N = 0.9.

(a) (b)

(c) (d)

Fig. 6. Effect of the parameters β (a), N (b), ε (c), and λ (d) on the temperature field θ (y) for plane Couette-Poiseulle flow
when (a): N = 0.5, ε = 0.9 and λ = 1; (b): ε = 0.9 and λ = β = 1; (c): N = 0.9 and λ = β = 1; (d): N = 0.5, ε = 0.9 and
β = 1.
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Table 1. Relation between Ω and D given in [27].
D 0 0.5 1.0 1.5 2.0 2.5 3.0
Ω 0 0.3411 0.4999 0.6067 0.6894 0.7580 0.8172

Table 2. Relation between β and D for Ω = 1/2.

β 0 0.2 0.4 0.6 0.8 1.0 2.0 4.0
D 0 0.55 0.60 0.65 0.70 0.75 0.1 1.50

Fig. 7. The variation of Ω as a function of D given in the right
hand side of (27).

both cases is the same as that of Figures 1 and 2, ex-
cept for somewhat larger velocity and temperature rise
in every later case. Figure 7 shows the variation of Ω
as a function of D given in the right hand side of (29).
The numerical relation of Ω as a function of D is also
given in Table 1. The velocity condition at Ω = 1/2
for various values of β satisfies the relation given in
Table 2.

5. Concluding Remarks

In this paper, three flow problems namely plane
Couette flow, plane Poiseuille flow, and plane Couette-
Poiseuille flow of a third order fluid between two paral-
lel heated plates with weak MHD and porosity effects
are investigated. We note the following features:

• Our solutions (31), (43) and (46) are exact
whereas in [1] only approximate solutions are pre-
sented.

• In order to compare our results with those of [1],
we set ε = 0. Also

β = B2β ∗, (49)

where β ∗ is that of [1].
• In addition we have modified [1] and observe the

effect of weak magnetic field and porosity on both
velocity and temperature profiles and found that the
boundary layer thickness decreases with the increasing
parameters of N and ε .

• We can achieve the results of Newtonian fluid for
plane Couette flow when β = 0.
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