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Recently, many studies for the local structure of 3d5 ions in octahedrally coordinated compounds
are made by simulating the EPR parameters on the basis of the complete energy matrix. However, for
the 3d4 ions in tetrahedrally coordinated compounds, the studies are relatively fewer. In this work,
by diagonalizing the complete energy matrix for a d4configuration in a tetragonal ligand-field within
a strong-field representation, the local structure around Cr2+ in CdS crystal is studied. Our results
show that there exists a compression distortion in the local lattice structure. From our calculations,
the distortion parameters ∆R = −0.022 Å and ∆θ = −1.410◦ are obtained.
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1. Introduction

It is well known that electron paramagnetic reso-
nance (EPR) is a suitable technique for the study of
transition-metal impurities at low concentration levels
in compounds. This technique and ligand-field theory
have been used to determine the location and charge
state of 3dn complexes [1 – 9]. In II-VI and III-V semi-
conductors, the transition-metal ions, which are often
encountered as trace impurities, can strongly affect the
optical and electrical properties. So, many works have
been made for these impurities in II-VI and III-V semi-
conductors. For example, the EPR spectra of CdS:Cr2+

were reported and the EPR zero-field-splitting param-
eters a and D were determined by Vallin et al. [5].
The parameter a relates to a fourth-order spin opera-
tor and represents a cubic component of the crystalline
electric field. The parameter D is associated with the
second-order spin operators and represents an axial
component of the crystalline electric field. Their re-
sults show that CdS:Cr2+ system undergoes a Jahn-
Teller (JT) distortion, effecting a change in the Cr2+

site symmetry from tetrahedral (Td) to tetragonal (D2d).
In their paper, the crystal-field theory and Jahn-Teller
coupling are adopted, but confined to the 5D approxi-
mation. Recently, we have studied the spin-singlet con-
tributions to EPR zero-field-splitting parameters [10].
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Our results show that the contributions of spin singlets
to the zero-field-splitting parameters a and F are very
important. So, to get more accurate zero-field-splitting
parameters, all spin states (S = 2, 1 and 0) should
be considered. As is known to us, the EPR spectra
are very sensitive to the local lattice structure distor-
tion, so it is reasonable to study the local structure of
CdS:Cr2+ system by calculating the EPR parameters.
In this paper, we shall construct the complete energy
matrix (210× 210) of d4 ions in tetragonal symmetry
adapted to the double group chain within a strong-field
representation, and study the local lattice structure of
CdS:Cr2+ system by simulating the EPR parameters
a and D with the energy matrix. The results are dis-
cussed.

2. Theory

The Hamiltonian in tetragonal field can be written
as

H ′ =Ve(B,C)+V A1
c (Dq)+HS.O.(ζ )+V Eθ (µ ,δ ), (1)

where Ve is the electrostatic energy, B and C the Racah
parameters; V A1

c is the cubic component of the crystal-
field, Dq the cubic crystal-field parameter; HS.O. is the
spin-orbit coupling energy, ζ the spin-orbit coupling
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Table 1. The energy matrix of d4(D∗
2d).

Γ ′′γ ′′ Γ ′γ ′

A2 (23×23) T1z (23×23)

Γ ′′γ ′′ Γ ′γ ′

B2 (27×27) T2zζ (27×27)

Γ ′′γ ′′ Γ ′γ ′

A2 (8×8)
B1 (27×27) Eε (19×19)

Γ ′′γ ′′ Γ ′γ ′

A1 (14×14)
A1 (33×33) Eθ (19×19)

Γ ′′γ ′′ Γ ′γ ′

T1x (23×23)
Ex (50×50) T2ξ (27×27)

Γ ′′γ ′′ Γ ′γ ′

T1y (23×23)
Ey (50×50) T2η (27×27)

parameter, and V Eθ is the tetragonal component of the
crystal field, µ and δ the tetragonal distortion parame-
ters.

The d4 basis functions in a tetragonal symmery
(D∗

2d) for each irreducible representations Γ ′′ (i. e. A1,
A2, E , B1, B2) of the double group D∗

2d(d
4) can be con-

structed with d4(O∗
h) basis functions |qi,SΓ Γ ′γ ′〉 by

the formula below:

|qi,SΓ Γ ′ →Γ ′′γ ′′〉=∑
γ ′
〈Γ ′γ ′|Γ ′′γ ′′〉|qi,SΓ Γ ′γ ′〉 , (2)

where, 〈Γ ′γ ′|Γ ′′γ ′′〉 are the coupling coefficients.
|qi,SΓ Γ ′γ ′〉 for each irreducible representation Γ ′
(i. e. A1,A2,E,T1,T2) of the double group O∗

h(d
4) can

be got with the Griffith [11] strong-field functions
|qi,SΓ Mγ ′〉 of the point group Oh(d4) according to the
expression

|qi,SΓ Γ ′γ ′〉 = ∑
Mγ

〈SΓ Mγ|Γ ′γ ′〉|qi,SΓ Mγ〉 , (3)

where γ ′ denotes different components of Γ ′, qi stands
for the ith strong-field configuration tn

2 (S1Γ1)em(S2Γ2)
in the electrostatic matrix table of Griffith for d4 con-
figuration. The matrix of Hamiltonian (1) with re-
spect of the 210 d4(D∗

2d) basis functions (2) will be

a block diagonal form of six Γ ′′γ ′′ blocks. That is, the
matrix splits into four one-fold degenerated matrices
A1(33× 33), A2(23× 23), B1(27× 27), B2(27× 27)
and one two-fold degenerated matrix E(50× 50). In
each Γ ′′γ ′′ block, the component of Ve +V A1

c +HS.O. is
a block diagonal form of Γ ′γ ′ blocks (Table 1), but the
matrix elements of V Eθ can be at any position. Finally,
each matrix element of the complete energy matrix can
be expressed to be a linear combination of B, C, ζ , Dq,
µ , δ . The crystal-field parameters can be expressed as

Dq =
1
24

G4(τ)
(

10cos4 θ − 20
3

cos2 θ − 2
3

)
,

µ =
8
7

G2(τ)(3cos2 θ −1)

− G4(τ)
(

5cos4 θ − 110
21

cos2 θ +
25
21

)
,

δ =
6
7

G2(τ)(3cos2 θ −1)

+ G4(τ)
(

5cos4 θ − 110
21

cos2 θ +
25
21

)
,

(4)

where

G2(τ) = −eqr〈r2〉
R3 , G4(τ) = −eqr〈r4〉

R5 . (5)

R and θ denote the Cr-S bond length and angle be-
tween Cr-S bond and C4 axes, respectively, qr is the
charge of ligand, −e is electron charge. With use of (4)
and (5), the local structure parameters R and θ can be
studied by employing the complete energy matrix.

The EPR spectrum of Cr2+ in a tetragonal symmetry
field can be analyzed according to the following spin
Hamiltonian [12]

Hs = D(S2
Z −2)+

a
120

(35S4
Z −155S2

Z + 72)

+
a
48

(S4
+ + S4

−)+
F

180
(35S4

Z −155S2
Z + 72),

(6)

where a, D, and F are just the EPR parameters. By
combining the spin functions |SM〉 for S = 2, we can
construct a set of spin basis functions of the double
group D∗

2d for spin Hamiltonian Hs as follows:

|A1〉 =
i√
2

(|2−2〉− |22〉),

|A2〉 =
1√
2

(|2−2〉+ |22〉),
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A1 A2 Ex Ey B2

A1 2D− 2a
5 + F

15 0 0 0 0
A2 0 2D+ 3a

5 + F
15 0 0 0

Ex 0 0 −D− 2
5 a− 4

15 F 0 0
Ey 0 0 0 −D− 2

5 a− 4
15 F 0

B2 0 0 0 0 −2D+ 3
5 a+ 2

5 F

Table 2. The spin-Hamiltonian matrix.

|Ex〉 =
i√
2

(|21〉+ |2−1〉),

|Ey〉 =
1√
2

(|21〉− |2−1〉),

|B2〉 = |20〉 . (7)

The Hs matrix is presented in Table 2. From this Table,
we can get its eigenvalues

E(A1) = 2D− 2
5

a +
F
15

,

E(A2) = 2D+
3
5

a +
F
15

,

E(B2) = −2D− 3
5

a +
2
5

F,

E(Eγ ) = −D− 2
5

a− 4
15

F (γ = x,y).

(8)

Thus, we have

a = E(A2)−E(A1),

D = −1
7
(E(Eγ )−E(A1)−E(A2)+ E(B2)),

F =
3
7
(3E(B2)−3E(A2)−4E(Eγ)+ 4E(A1)).

(9)

The eigenvalues can be obtained by diagonalizing the
complete energy matrix (210×210) of d4(D∗

2d).

3. Calculations and Discussion

If θ = cos−1(1/
√

3) in (4) for a cubic approxima-
tion, then we have

Dq0 = − 2
27

G4(τ)0,

µ = 0 and δ = 0.
(10)

In this case, the G2(τ) and G4(τ) for CdS:Cr2+ system
can be written as:

G2(τ) =
(

R0

R

)3

G2(τ)0,

G4(τ) =
(

R0

R

)5

G4(τ)0.

(11)

Table 3. The energy levels of the ground state of CdS:Cr2+

(in cm−1).

Free tetrahedral tetragonal spin-orbit
Cr2+ ion field (Td ) field (D2d) interactions

5D 0 5E 4070 5A1 5514.962 A1 5544.214
E 5543.017
B1 5539.413
B2 5539.409

5B1 4550.758 A2 4580.349
A1 4580.333
E 4577.451
B1 4576.479

5T2 0 5E 1189.642 E 1326.398
B2 1275.953
B1 1255.124
E 1207.291
A2 1160.155
A1 1140.309
E 1092.631

5B2 0 B2 7.330
E 5.463
A2 0.159
A1 0

The ratio G2(τ)0/G4(τ)0 can be estimated from the ra-
dial wave function [13] as well as (5), and we estimate
the ratio G2(τ)0/G4(τ)0 = 2.768. The G4(τ)0 can be
obtained from the cubic ligand-field parameter Dq0 by
G4(τ)0 = − 27

2 Dq0. Thus, if Racah parameters B, C,
and spin-orbit parameter ζ are known, the local struc-
ture parameters R and θ can be studied with the en-
ergy matrix. Unfortunately, for CdS:Cr2+ system, only
the cubic field parameter Dq0 = −407.0 cm−1 can be
obtained from the optical spectrum because only the
transition 5T2 →5 E is obtained [5]. For Racah param-
eters B, C, and spin-orbit parameter ζ , we use approxi-
mately the values B = 500 cm−1, C = 2850 cm−1, and
ζ = 223.6 cm−1 of ZnS:Cr2+ here [14, 15], because
the tetrahedral sites of Cr2+ in the two crystals have
the same (CrS4)6− group and similar cation-ligand dis-
tance. The calculated energy levels of the ground state
of CdS:Cr2+ are listed in Table 3. The local lattice
structure around the Cr2+ displays a tetragonal distor-
tion. This distortion can be described by employing the
two parameters ∆R and ∆θ . If one uses R0 and θ0 to
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Table 4. The EPR parameters for CdS:Cr2+ system as a func-
tion of ∆R and ∆θ .

∆R (Å) ∆θ (deg) a (cm−1) D (cm−1) F (cm−1)
1.0 0.3 −1.192 −0.258

−0.01 1.410 0.164 −1.836 −0.148
1.820 0.108 −2.206 −0.102

1.0 0.289 −1.166 −0.247
−0.022 1.410 0.159 −1.805 −0.145

1.820 0.105 −2.172 −0.100

1.0 0.273 −1.130 −0.234
−0.04 1.410 0.151 −1.762 −0.140

1.820 0.101 −2.123 −0.098

1.0 0.243 −1.066 −0.213
−0.08 1.410 0.137 −1.680 −0.13

1.820 0.092 −2.028 −0.092

1.0 0.218 −1.021 −0.194
−0.12 1.410 0.125 −1.616 −0.122

1.820 0.085 −1.951 −0.087
Exp. [5] 0.150 −1.805

represent the Cd-S bond length and the angle between
Cd-S bond and C4 axes of the host crystal CdS, respec-
tively, then the local structure parameters R and θ for
CdS:Cr2+ system may be expressed as

R = R0 + ∆R, θ = θ0 + ∆θ . (12)

Thus, the relationship between the distortion of local
lattice structure of CdS:Cr2+ system and the EPR pa-
rameters can be studied by diagonalizing the complete
energy matrix. We finally obtained the EPR ground-
state zero-field splitting by adjusting the parameters
∆R and ∆θ . The results are listed in Table 4.

From Table 4 we can see that the experimental find-
ings of EPR parameters can be satisfactorily explained
for the distortion parameters ∆R =−0.022 Å and ∆θ =
1.410◦. ∆R < 0 indicates that the local lattice structure
of CdS:Cr2+ system has a compression distortion. The
compression distortion may be ascribed to the fact that
the radius of the Cr2+ ion (r = 0.89 Å) is smaller than
that of Cd2+ ions (r = 0.97 Å) [16].

4. Conclusion

The local lattice structure for the CdS:Cr2+ system
has been studied by simulating the EPR parameters
with the complete energy matrix for d4 configuration
ion in a tetragonal ligand-field. From the above stud-
ies, we can find that the EPR parameters a and D for
Cr2+ in CdS crystal can be satisfactorily explained by
considering the suitable local lattice distortions. The
results show that the local lattice structure of CdS:Cr2+

system has a compression distortion when the Cr2+

ion is doped into CdS crystal. It is known that the ra-
dius of Cr2+ ion is smaller than that of Cd2+ ions.
Then, the Cr2+ ion would pull the sulfur ligands down-
wards and upwards, respectively. From our calculation,
the local lattice structure parameters R = 2.498 Å and
θ = 56.146◦ for Cr2+ in CdS have been determined.
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