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We systematically analyze the molten salt database of Janz to gain a better understanding of the
relationship between molten salts and their properties. Due to the multivariate nature of the database,
the intercorrelations amongst the molten salts and their properties are often hidden and defining them
is challenging. Using principal component analysis (PCA), a data dimensionality reduction technique,
we have effectively identified chemistry-property relationships. From the various patterns in the PCA
maps, it has been demonstrated that information extracted with PCA not only contains chemistry-
property relationships of molten salts, but also allows us to understand bonding characteristics and
mechanisms of transport and melting, which are difficult to otherwise detect.
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1. Introduction

Molten salts have many unique characteristics ad-
vantagous in industrial applications, such as improving
the processing of metals where thermodynamic or ki-
netic constraints exist. Molten salts can be used in the
electrodeposition of metals and composites, for bet-
ter waste processing and recycling, and in enhancing
a wide range of energy applications. The ever-growing
field constituted by low-temperature multi-component
molten salts [1] as well as room-temperature ionic liq-
uids [2] should be stressed in view of the even larger
possible applications related to the organic nature of
cations in the latter. In the past, a huge demand to col-
lect and publish all known properties of molten salts
existed. In the present paper, we will use data mining
tools to systematically analyze this data to extract new
knowledge that will permit a better understanding of
molten salts, related to aspects such as chemistry, pro-
cessing and properties.

In the study of molten salts for any given chemistry,
there exist corresponding structural, chemical, physi-

cal, and thermodynamic attributes (Table 1). The anal-
ysis of pre-existing empirical and theoretical data as
well as the virtual design of new materials is a multi-
variate problem, which requires the use of data mining
tools to find new information regarding the properties,
both microscopic and macroscopic. Following the se-
ries of books published in the pioneering activity of
G.J. Janz, an early version of a molten salt database
was released, which is still the most comprehensive
compilation of property data on molten salts available
today. Some twenty years later, this numerical infor-
mation was converted into a relational database, with
Web-access capability [3 —5]. In this paper, PCA is ap-
plied to this database, originally designed as a static
compilation of materials data, to search for trends that
can be useful in guiding future work to advance the
molten salts field.

The data sets used in the present study are composed
of seven variables for 1658 samples [6]. Since data of
viscosity is limited in this database, two different cases
are shown to illustrate applications of the PCA. While
the data matrix having 473 samples for all seven vari-
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Table 1. Descriptors for molten salts.

e Structural data .
— Atomic/ionic size .

Electrochemical potential
Phase equilibria

- Coordination number e Cryoscopic behaviour
— Cation/cation distance e Heat conductance
— Anion/anion distance e Solubility

e Viscosity e Melting point

e Heat capacity o Transport numbers

e Conductivity e Raman spectra

e Surface tension e Neutron scattering

e Refractive index e X-ray scattering

e Density e NMR/EPR data

o Compressibility etc.

ables including viscosity was used as the first example,
the second case studied does not include viscosity and
is comprised of 1377 samples and six variables. As an
example of traditional data visualization, all of the data
in Fig. 1 is shown in the form of a scatter plot to see in
a bivariate manner the relationships existing between
variables. While some correlations can be seen, it is
difficult to describe the relationship among multiple
parameters and extract this information so as to guide
future work. For this reason, we are analyzing this data
through a systematic data mining methodology. Future
work will look to apply the statistical techniques de-

nations in the scatter plot.

veloped here to more recent databases of molten salts
[7-11].

2. Principal Component Analysis: Informatics
Tool for Multivariate Data

The multivariate data analysis method used in this
paper is PCA, which is a useful projection tool in qual-
itatively guiding the interpretation of huge amounts
of multivariate data with interrelated variables. By re-
ducing the information dimensionality in a way that
minimizes the loss of information, PCA constructs un-
correlated axes leading to the transformation (i. e. ro-
tation) of the original coordinate system. The con-
structed PCA axis is referred to as a “latent variable”
(LV) or “principal component” (PC). LVs which are
independent (i. e. orthogonal) of each other are the lin-
ear combinations of original variables. By using just a
few LVs, the dimensionality of the original multivari-
ate data sets are reduced and visualized by their projec-
tions in the 2-dimensional (2D) or 3-dimensional (3D)
space with a minimal loss of information. Therefore,
PCA allows dimensionally reduced mapping of mul-
tivariate data sets. PCA is used in this paper because
of the multiple physical parameters in the molten salts
data.
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Fig. 2. A graphical schematic of the
PCA approach from given N param-
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where PC (principal component)= f (all parameters)
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relation maps with respect to reduced
dimensionality. This approach provides
a guide to identify interdependency of
parameters (i.e. in a loading plot) and
correlations between molten salts (i.e.
in a score plot) in the 2D space.

PCA relies on the fact that most of the variables
are intercorrelated. As shown in Fig. 2, we can derive
a set of N uncorrelated variables (the principal com-
ponents) from a set of N correlated variables. Each
selected parameter is then combined to make latent
variables in the form of linear combinations. There-
fore, each PC is a suitable linear combination of all
the original variables. The first principal component
(PC1) accounts for maximum variance (information in
data) in the original dataset. The second principal com-
ponent (PC2) is orthogonal (uncorrelated) to the first
one and accounts for the largest amount of remaining
variance. Thus, the m-th PC is orthogonal to all oth-
ers and has the m-th largest variance in the set of PCs.
Once the N PCs have been populated using eigenvalue/
eigenvector matrix operations, only PCs with variances
above a critical level determined from a scree plot are
retained. By exploiting the low dimensionality of data

sets formed by a few PCs, molten salts are easily clas-
sified by the effects of variables, and variables are clus-
tered with their statistical similarities as well. Through
the process of eigenvector decomposition in PCA, the
original data is decomposed by two matrices, loadings
and scores.

The loadings are the weights of each original vari-
able while scores contain information of original sam-
ples in a rotated coordinate system. Thus, PCA loading
plots are mapping the correlation between variables,
and score plots are mapping the correlation between
samples (Fig. 3). Interpretations of the loading plot are
twofold:

e Degree of correlation between variables: angle be-
tween variable-origin-variable.
e Relative impact of variables on the PCA model:

distance from the origin to variable.
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Degree of correlation between variables:
Angle between arrows (loading position)

Loadings on PC2

Var4@

Var 9
.V
Var 8 i\

N,
S,

O
yars .f) Loadings on PC1

var 0@ 4/

¢

Var 2

e

1) Similar properties (correlated) are grouped together.

2) Inversely correlated variables sit on opposite (or diagonal) sides.

3) These relations can be explained using cosine angle between
arrows from origin to variables.

Examples:

— Var 8 and 9 are highly correlated [cos(0) ~ 1].

— Var 8 and 9 are also inversely correlated with var 7 [cos(a) =
T —1].

—  Var 10 and 2 are somewhat correlated [cos(a’) < 7/2].

— Similarly, there is almost no correlation between var 9 and var 5.

C. Suh et al. - Chemistry-Property Relationships in Molten Salts

Relative impact of variables on PCA model:
Length of arrows (distance from the origin)

Loadings on PC2

Var4 @
Var 9@
Var 8
o Var5 /,.& Var 1
Var 3 :3,’ % Loadings on PC1
var10@* 1y
@var7
®
Var 2

1) A longer distance indicates a stronger impact, while a shorter
distance corresponds to a weaker impact.

2) Similar distances represent similar impacts of variables.

Examples:

— Var 10 has a strong impact on PC1 while PC2 is a strong function
of var 4.

— Var 1 and 10 have similar impacts on the PC1-PC2 model (/; ~
b).

— Impact of var 3 or var 5 on PC1-PC2 model is quite small.

Fig. 3. A schematic illustration of PCA interpretation to track correlations between variables (or properties). The PCA loading
plot simply shows how an N-dimensional correlation plot appears, while still retaining many of the qualitative features shown
in the bivariate case such as Figure 1. Each point represents loadings of each variable (Var). Thus, ten variables are shown in

this example (i.e. N = 10).

The degree of correlation between variables is de-
termined by the angles (cosine) between them. If
the angle between two variables at the origin is 0,
then 8 = 0° for highly positively correlated variables,
0 = 180° for highly inversely correlated variables,
and 6 = 90° if no correlation exists. A PCA load-
ing plot captures all the possible bivariate correla-
tions within a multivariate data set in the 2D space.
Since PCA reduces the dimensionality of variables
with a minimum loss of information, it should be
noted that correlations on the PCA map depend on
the variance captured by the confined dimensions,
which means that they could be different from bivari-
ate correlation coefficients (e.g. Pearson’s). On the
other hand, the relative impact of each variable can
be identified by measuring the distance from the ori-
gin. For instance in Fig. 3, the PC1 axis mainly mea-
sures variable 1 and 10 while the PC2 axis captures
variables 2 and 4. Therefore, information contained

by the first two PCs is highly related to these four
variables.

The same logic can be applied to the score plot.
Samples having similar properties sit closely in the
score plot and samples of different behaviours sit sep-
arately. Outliers generally exist at a long distance from
the origin. The key point in loading and score plots is
that all the variables and samples are simultaneously
explained by their relative behaviours in terms of cor-
relations in reduced dimensions. More detailed math-
ematical description of PCA can be found in litera-
tures [12,13].

3. Results and Discussion

3.1. Case Study 1: (473 x 7) Data Matrix including
Viscosity

In this section, we provide examples of our analysis
using the PCA technique. The impact of a multivari-
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ate analysis of seven descriptors was explored on con-
ductivity and density behaviour. These are presented
in Fig. 4 and contain all seven descriptors as a function

Loadings on PC1 (47.27%)
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Fig. 4. (a) The PC1-PC2 score
plot for the complete data us-
ing principal components with
95% confidence limits (el-
lipse). The use of two PCs to
concisely describe a variable
space spanned by seven de-
scriptors is a good example of
this method’s advantages. The
outliers can be seen outside the
95% confidence limit envelope
(BiClj3 series). (b) The loading
plot displays the relationships
between the variables. The odd
behaviour of BiClj in the score
plot is due to the high viscosity
of this sample as shown in the
loading plot.

of the temperature of the measurement. The first two
PCs explain 68.24% (PC1: 47.27%, PC2: 20.97%) of
the variance (information) in the data. These PCs are
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linear combinations of seven variables according to:

score on PC1 = —0.301Eg.wt + 0.455M P

+0.469T + 0.420Eg.con+0.378Spe.con (1)
—0.311D-0.257V,

score on PC2 = 0.602Eg.wt + 0.033MP
+0.088T + 0.356Eq.con+0.270Spe.con  (2)

+0.608D —0.243V,

where Eq.wt is the equivalent weight, MP the melting
point, T the temperature of the measurements, Eq.con
the equivalent conductance, Spe.con the specific con-
ductance, D the density, and V the viscosity. Each coef-
ficient in the linear combination is defined by the load-
ing value and is used to create loading plots such as in
Figure 4b.

In the score plot, Fig. 4a, most of the trajectories for
temperature appear to lie at around 30° to the chem-
istry trajectory due to the combined effect of viscosity
and temperature, as seen in Figure 4b. BiCl3, an outlier
in the PC space of Fig. 4a, also appears as an outlier
in the bivariate plot of Fig. 1, confirming our results.
In the loading plot, Fig. 4b, melting point, tempera-
ture of the measurement, and equivalent/specific con-
ductance are strongly correlated. Most molten salts are
classical examples of this behaviour since they have
high density but low viscosity. We see this relationship
from the loading points through the PC2 axis of load-
ings, as well as the relationships between viscosity and
other variables with the PCA plot of Fig. 4b. Viscos-
ity has negative correlations with melting point, tem-
perature of the measurement, and equivalent/specific
conductance, according to their PC values in diagonal
quadrants. Correlations between density (or equivalent
weight) and conductance are not strong because they
have positive PC2 values, although they have different
signs in PC1 values.

To screen the relationships between samples and
variables, we should explore the scores and loadings
simultaneously (i. e. Figs. 4a and b). For instance, sam-
ples in the third quadrant have high viscosity. Simi-
larly, samples in the second quadrant have relatively
high density and equivalent weight. Consequently, the
PCA plot serves as a correlation map of samples, vari-
ables, and samples-variables for qualitative and quanti-
tative interpretations of physical behaviours of molten
salt systems. These correlations can be found by plot-
ting parameters against each other, as shown in Fig. 1,
but that requires many plots and is inefficient.
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3.2. Case study 2: (1377 x 6) Data Matrix without
Viscosity

In the second example, we perform PCA using all
the single-salt records without any viscosity informa-
tion in the Janz data set. The size of this data matrix
is 1377 x 6. In this case, we use PC1, PC2, and PC3
because PC3 accounts for over 19% of the variance. In
Fig. 5, all the Janz data without viscosity is compressed
and visualized in the 3D space in a way that minimizes
the loss of information. From Fig. 5, we choose two
interesting projections, PC1-PC2 and PC1-PC3 for in-
terpretation (Figs. 6 and 7, respectively). As shown in
Fig. 6a and Fig. 7a, changes in bonding characteristics
along the PC1 axis are observed. The compounds on
the right-hand side in the score plot have typical ionic
characteristics while more covalent compounds sit on
the left-hand side of the plot.

In Fig. 7, scores and loadings spanned by PC1 and
PC3 are shown. Two described compounds on the PC1-
PC3 projection in Fig. 7a are not in the 95% con-
fidence limit. These melts are LiCl and LiBr, which
have the most ionic bonds compared to the other com-
pounds presented here. Our procedure and the descrip-
tors mentioned above describe the melts well, with
the exception of those with the most extreme bonding
(high ionicity). For possible improvement, we could
integrate new descriptors that are characteristic of ionic
compounds.

Scores on PC3 (19.47%)

-89

%) 3

Fig. 5. The 3D score plot for complete data without the vis-
cosity information. This dimensionally compressed plot con-
tains most of the sample trends with respect to six variables,
with a minimal loss of information. Black, for raw data; gray,
for PC1-PC2, PC1-PC3, and PC2-PC3 projection as appro-
priate.
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As shown in Fig. 7b, the loading values of tem-
perature of the measurement, melting point, and
conductance are similar in PC1 while the loading
values are different in PC3. Therefore, PC3 cap-

Loadings on PC1 (49.89%)

ure 7b.

473

Fig. 6. (a) The score plot of
PC1-PC2 for complete data
without the viscosity data us-
ing principal components with
95% confidence limits. (b) The
loading plot of PC1-PC2.

tures the independent characteristics of conductance,
temperature of the measurement and melting point.
This effect is depicted with marked arrows in Fig-
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Fig. 7. (a) The score plot of
PC1-PC3 for complete data
without the viscosity column
using principal components
with 95% confidence limits.
The two emphasized melts,
CdCl, and SrBrj, in the centre
of the score plot have nearly
temperature-independent con-
ductivity and mixed bonding
characteristics  (ionic  and
covalent). The other two em-
phasized melts (Gal, and
Hgl,) on the left of the plot
have low transport coefficients.
(b) The loading plot of PCI1-
PC3. Note that PC3 captures
effects due to conductance,
temperature and melting point
while density and equivalent
weight are not explained fully
[arrows on (b)]. Converging
trends are shown on the left
side of the score plot which
show conducting mechanisms
as a function of temperature.

Different slopes for each molten salt in the score  sample describes the conduction mechanism and trans-
plots, Fig. 6a and Fig. 7a, explain different behaviours  port coefficients. Differences in slopes for each sam-
of molten salts. For example, the trajectory for each ple are more clearly seen on the PC1-PC3 projection,
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Figure 7a. Since bonding characteristics of the melts
such as CdCl, and SrBr; are neither covalent nor ionic
based on their score values (PC1 — 0), their conduc-
tivity change with temperature is minor, as seen by a
trajectory parallel to the PC1 axis. While samples hav-
ing a positive slope of trajectory (i. e. increasing con-
ductance against temperature) are on the positive side
of the PC3 axis, samples with a negative slope of tra-
jectory are on the negative side of the PC3 axis. While
transport properties are very high in ionic melts, they
are low in molecular liquids (ex. Hgl, and Gal,) and in
the network type of melts, similar to the case of poly-
mers (ex. halides of zinc). Since the thermal and spe-
cific conductivity are directly temperature-dependent
properties, the same trends in conductivity are ob-
served on the loading plots (Fig. 6b and Fig. 7b).

Comparing the effect of ionicity-covalency on melt-
ing points (PC1 axis) for all compounds, we observed
that increased covalency is consistent with a decrease
in melting point. The highest melting points pertain to
ionic materials (for instance, LiF, NaF, CsF, BaCl, with
melting points in the range 1000— 1200 K) and cova-
lent melts have lower melting points (Hgl,, TINOj3,
and SnCl, with melting points in the range 450-
600 K). Materials in the middle range of the plot (score
values of PC1 nearly zero) were identified as corre-
sponding to the melting range 600 — 1000 K.

-1 0
Scores on PC1 (49.89%)

shown.

The well-known linear relationship between en-
tropy of melting (ASp,) and estimated volume change
(AVin/V) on melting can be used to describe differ-
ent behaviours of the systems in this study. For the
systems with a special melting mechanism, i.e. from
disordered solid or a network-forming liquid into a
molecular liquid, some exceptions from linearity are
observed [14, 15]. The same melts also deviate from
the others as shown in Fig. 8, a magnified version of
Figure 7a. In this figure, a steeper slope is observed
when the melting system goes through a transition
from ionic crystal to molecular liquid (ex. Hgl, and
BiBr3). The melting mechanisms of MgCl, and YCls,
which have relatively gentle slopes, can be viewed
as a transition from an ionic crystal to an ionic lig-
uid without any drastic difference in behaviour during
the melting, as compared with the other molten salts.
Even in the absence of those values, these observa-
tions confirm our descriptions of selected molten salts
through PCA.

Most patterns of samples converge to a single type
of melt on the left-hand side in the PC1-PC3 score
plots of Figure 7. We also assume that melts around
this converging region should be molecular liquids
without any change of the molecular structure during
the melting process. These melts would also have a
high molar mass, limited conductivity, high density
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and low melting point and might even be liquid at room
temperature.

4. Conclusions

We have provided examples of statistical ap-
proaches for identifying chemistry-property relation-
ships in a classic materials database (molten salts). By
using PCA, we described multiple physical parameters
easily, helping us to identify outliers, find global and
local patterns in the samples, and study the correlations
between the variables. The results showed that ex-
tracted information from PCA captures bonding char-
acteristics, transport mechanisms, and the melting of
molten salts. Consequently, it has been demonstrated
that the classical Janz’s molten salts database is a good
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