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The effect of a magnetic field and suspended dust particles on both the Kelvin-Helmholtz (K-H)
and the Rayleigh-Taylor (R-T) instability of two superimposed streaming magnetized plasmas is in-
vestigated. The magnetized fluids are assumed to be incompressible and flowing on top of each other.
The usual magnetohydrodynamic (MHD) equations are considered with suspended dust particles.
The basic equations of the problem are linearized and the dispersion relation is obtained using nor-
mal mode analysis by applying the appropriate boundary conditions. The general dispersion relation
is found to be modified due to the presence of the suspended dust particles and of the magnetic field.
The effect of the magnetic field appears in the dispersion relation if three-dimensional perturbations
of the system are considered. The general conditions of the K-H instability as well as the R-T insta-
bility are derived for the considered medium. The stability of the system for both cases is discussed
by applying the Routh-Hurwitz criterion. Numerical analysis is performed to show the effect of var-
ious parameters on the growth rates of the K-H and R-T instabilities. Three different cases of the
present configurations are considered and the conditions of instability are obtained. It is found that
the conditions for the K-H and R-T instabilities depend on the magnetic field, on the suspended dust
particles and on the relaxation frequency of the particles. The magnetic field and particle density have
stabilizing influence, while the density difference between the fluids has a destabilizing influence on
the growth rate of the K-H and R-T configurations.

Key words: Magnetohydrodynamics (MHD); Plasma Instability; Rayleigh-Taylor Instability;
Kelvin-Helmholtz Instability; Suspended Dust Particles.

1. Introduction

The Kelvin-Helmholtz (K-H) instability is the in-
stability of the plane interface between two super-
imposed fluids flowing on top of each other with a
relative horizontal velocity. It is widely discussed to
explain many phenomena viz. magnetic reconnection
processes in solar and magnetospheric dynamics, in
astrophysical jet simulation, high-β plasma processes,
magnetic confinement, auroras and magnetopause sta-
bility, and clusters of galaxies in astrophysical plasma
[1 – 3]. The effects of the magnetic field, the surface
tension, rotation, variable viscosity, and many other
parameters have been mostly discussed in the context
of the magnetohydrodynamic (MHD) K-H instability
for incompressible fluid plasmas [4 – 8]. Chengsen et
al. [9] have studied the combination of the Rayleigh-
Taylor (R-T) instability (which arises when the heavy
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fluid is supported by the light fluid) and the K-H in-
stability of compressible fluids. The K-H instability in
a rotating ideally conducting inhomogeneous plasma
has been investigated by Kumar et al. [10]. Chhajlani
and Purohit [11] have studied the K-H instability of
superimposed hydromagnetic fluids of different den-
sities with finite resistivity. Uberoi [12] has investi-
gated the finite thickness and the angle effect on the
marginal K-H instability considering the three-layered
structure of the plasma region viz. the magneto-sheath,
the boundary layer and the magnetosphere. Chhajlani
and Vyas [13] have studied the K-H instability prob-
lem in an oblique magnetic field using MHD equa-
tions. D’Silva and Choudhuri [14] have discussed the
effect of the K-H instability on rising flux tubes in the
convection zone. The K-H instability for the magneto-
sphere boundary layer region is studied by Parhi [15]
and Miura [16]. Recently, Watson et al. [17] have in-
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vestigated the K-H instability due to shear flow in a
weakly ionized medium. Thus we find that the K-H
instability is currently discussed in different configura-
tions and in different kinds of fluids with velocity shear
or with two different velocities at the interface.

Recent spacecraft observations have confirmed that
dust particles play an important role in the dynamics
of the Martian atmosphere as well as variations of the
temperature of the weather. The presence of suspended
dust particles in a gas is more realistic in astrophys-
ical situations. In geophysical situations, the fluid is
not pure but may be permeated with suspended par-
ticles. Michael [18] has investigated the K-H instabil-
ity of a dusty gas using Stokes’ drag force formula.
In this direction, the effect of suspended dust particles
is widely investigated in fluid dynamics for the dis-
cussion of flow and stability problems. Hans [19] has
reviewed the K-H instability in a composite medium
with neutral particles and finite Larmor radius (FLR)
corrections. Kumar [20] has made a study of the im-
plication of suspended particles on the K-H instability
in permeable media and found that the critical wave-
length decreases due to the presence of the suspended
particles. More recently El-Sayed [21] has investigated
the K-H instability for two viscoelastic superimposed
conducting fluids permeated with suspended particles
in a porous medium in the presence of magnetic field.
El-Sayed [22] has also studied the combined effects of
viscosity, FLR corrections and suspended particles on
the K-H instability of two superimposed incompress-
ible fluids. The effect of suspended dust particles, the
magnetic field, and the rotation on the R-T instabil-
ity of a Rivilin-Ericksen elastico-viscous fluid is also
discussed [23, 24]. Sharma and Chhajlani [25, 26] have
made an investigation of the R-T instability of two su-
perimposed magnetized conducting plasmas with ro-
tation, FLR corrections and neutral particles. Along
with this El-Sayed [27] has discussed the K-H instabil-
ity of two superimposed viscous and streaming dielec-
tric fluid permeated with suspended particles through
a porous medium under the influence of a tangential
electric field.

Along with this, Sanghvi and Chhajlani [28] have
investigated the R-T configuration of a stratified
plasma in the presence of suspended particles. Sharma
and Sunil [29] have studied the thermal instability of
a viscoelastic fluid with suspended particles in hydro-
magnetics. Sunil and Chand [30] have investigated the
R-T instability of plasma in the presence of a variable
magnetic field and suspended particles in porous me-

dia. Sharma and Kumari [31] have studied the stability
of a stratified fluid in a porous medium in the presence
of suspended particles and a variable horizontal mag-
netic field.

In this direction, Sanghvi and Chhajlani [32] have
studied the hydromagnetic K-H instability of two su-
perimposed streaming fluids acted upon by a uni-
form magnetic field transverse to the flow direction of
streaming in the presence of suspended particles and
FLR corrections. In their work we find that perturba-
tions are considered only in y-direction and the mag-
netic field is assumed to be in x-direction. Due to the
limitations in considering perturbations they could not
achieve the effect of a magnetic field in the dispersion
relation. Thus for the complete understanding of the
R-T and K-H instabilities of two superimposed mag-
netized fluids in the presence of various parameters,
we must consider perturbations in both the direction.
In the light of above studies, the object of the work
presented in this paper is to investigate the influence
of suspended dust particles on the joint K-H and R-T
configurations of two superimposed streaming fluids
for general perturbation in the presence of a uniform
magnetic field.

2. Basic Equations of the Problem

Let us consider two semi-infinite homogeneous flu-
ids separated by a plane interface (of negligible thick-
ness) at z = 0. The fluids in the regions z < 0 and z > 0
are, respectively, denoted by the subscripts 1 and 2 (see
Fig. 1). Each region is permeated with non-conducting

Fig. 1. Schematic diagram of the configuration.
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suspended dust particles of uniform size, spherical in
shape and with the same number density. Thus the
medium can be assumed as a uniform mixture of an
infinitely conducting, incompressible fluid and sus-
pended dust particles. The mixture of the hydromag-
netic fluid and the suspended dust particles is stream-
ing together in the presence of a uniform external mag-
netic field HHH(Hx,Hy,0) with flow velocity UUU(U,0,0)
and a downward gravitational field ggg(0,0,−g).

LetVVV and N denote the velocity and the number den-
sity of the dust particles. It is supposed that the bulk
concentration of the dust particles is very small, so that
the net effect of the dust particles on the fluid is equiv-
alent to an extra body force K N(VVV −UUU), where K is a
constant given by K = 6π a µ (Stokes’ drag formula),
a being the particle radius and µ is the viscosity of the
clean fluid.

On the basis of these assumptions the relevant basic
equations of the problem are

ρ
[

∂UUU
∂t

+(UUU · )UUU
]

= − p +
1

4π
( ×HHH)× HHH

+ KN(VVV −UUU)+ ρ ggg+ µ 2UUU ,

(1)

∂ρ
∂t

+ ·(ρUUU) = 0, (2)

·UUU = 0, (3)
∂HHH
∂t

= (HHH· )UUU − (UUU· )HHH, (4)

·HHH = 0, (5)

where ρ and p denote the density and pressure of the
fluid.

In the dynamics of fluid motion, the force exerted
by the fluid on the dust particles is equal and opposite
to the force exerted by the dust particles on the fluid.
The buoyancy force on the particles is neglected, as its
stabilizing effect is extremely small. The inter-particle
distance is assumed to be very large as compared to the
diameter of the particles and so the inter-particle reac-
tions can be ignored. The effects of electrical and mag-
netic forces on the suspended dust particles are also
ignored. Under these restrictions the equations of con-
tinuity and motion for such particles are

∂N
∂t

+ ·(NVVV ) = 0 (6)

and

mN
[

∂VVV
∂t

+(VVV · )VVV
]

= K N(UUU −VVV), (7)

where mN is the mass of the dust particles per unit
volume.

To investigate the stability of the configuration, we
assume the following perturbations in various physical
quantities:

VVV =UUU0 +vvv, UUU =UUU0 +uuu,

N = N0 + N (with N0 = constant),
p = p0 + δ p, HHH = HHH0 +hhh, and ρ = ρ0 + δρ ,

(8)

where the quantities with the subscripts 0 denote equi-
librium values and the quantities vvv, uuu(u, v, w), N, δ p,
hhh(hx, hy, hz), and δρ denote the perturbations in the ve-
locity of suspended dust particles, in the flow velocity
of the fluid, the number density of the dust particles,
the fluid pressure, the magnetic field, and in the den-
sity of the fluid, respectively.UUU0(U, 0, 0) is the unper-
turbed initial velocity of flow of fluid in x-direction. In
solving we remove the subscript 0 from all the equilib-
rium quantities for simplicity.

The linearized perturbation equations of such a
medium in the presence of suspended dust particles are

ρ
[

∂uuu
∂t

+(UUU · )uuu
]

=

− δ p +
1

4π
( ×hhh)×HHH + K N(vvv−uuu)+gggδρ ,

(9)

∂
∂t

δρ +(UUU· )δρ +(uuu· )ρ = 0, (10)
[

τ
(

∂
∂t

+UUU ·
)

+ 1
]

vvv = uuu, (11)

∂hhh
∂t

+(UUU · )hhh = (HHH· )uuu, (12)

·uuu = 0 and · hhh = 0, (13)

where τ = m/K denotes the relaxation time for the sus-
pended dust particles. It is also noticed that, in writ-
ing (9), we have assumed that the viscous term µ 2uuu
is negligible as compared to the viscous drag force
K N(vvv−uuu).

Analyzing the perturbations via expansion into nor-
mal mode, we seek solutions of (9) – (13), whose de-
pendence on x, y and t is given by

exp(ikxx + ikyy + nt), (14)

where kx and ky are the horizontal wavenumbers (k2 =
k2

x + k2
y) and n is the temporal growth rate of the per-

turbation.
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3. Dispersion Relation

Now eliminating v from (9) with the help of (11)
and then employing (14) on (9) to (13), we obtain the
following set of equations:

ρ
[

n + ikxU +
α0(n + ikxU)

τ(n + ikxU)+ 1

]
u

= −ikxδ p +
Hy

4π
(ikyhx − ikxhy),

(15)

ρ
[

n + ikxU +
α0(n + ikxU)

τ(n + ikxU)+ 1

]
v

= −ikyδ p +
Hx

4π
(ikxhy − ikyhx),

(16)

ρ
[

n + ikxU +
α0(n + ikxU)

τ(n + ikxU)+ 1

]
w

= −Dδ p−gδρ +
Hx

4π
(ikxhz −Dhx)

+
Hy

4π
(ikyhz −Dhy),

(17)

(n + ikxU)δρ = −w(Dρ), (18)

(n + ikxU)hhh = (ikxHx + ikyHy)uuu, (19)

ikxu + ikyv + Dw = 0, (20)

ikxhx + ikyhy + Dhz = 0, (21)

where α0 = mN/ρ denotes the mass concentration of
the particles and D = d/dz.

Multiplying (15) and (16) by −ikx and −iky, respec-
tively, and adding the results using (20), we get

[
n + ikxU +

α0(n + ikxU)
τ(n + ikxU)+ 1

]
ρ(Dw)

= −k2δ p +
1

4π
[
Hy(kxkyhx − k2

xhy)

+ Hx(kxkyhy − k2
yhx)

]
.

(22)

Now eliminating δ p between (17) and (22) and using
(18) – (21), we get

[D(ρDw)− k2ρw]
[

n + ikxU +
α0(n + ikxU)

τ(n + ikxU)+ 1

]

+
(Hxkx + Hyky)2

4π(n + ikxU)
(D2 − k2)w+

gk2(Dρ)
n + ikxU

w = 0.

(23)

Equation (23) is a general dispersion relation incor-
porating the effects of the magnetic field and of the
suspended dust particles. It should be remarked here

that the density of the suspended dust particles in the
both regions is assumed to be the same.

Consider the case of two superimposed fluids of
densities ρ1 (lower fluid) and ρ2 (upper fluid), sepa-
rated by a horizontal boundary at z = 0. Let the stream-
ing velocities of the two fluids be UUU1(U1,0,0) and
UUU2(U2,0,0) then, in each of the two regions of con-
stant densities, (23) becomes

(D2 − k2)w = 0. (24)

Since w must be bounded both when z → −∞ (in the
lower fluid) and z → +∞ (in the upper fluid), the ap-
propriate solutions of (24) can be written as

w1 = A(n + ikxU1)exp(kz) (z < 0), (25)

w2 = A(n + ikxU2)exp(−kz) (z > 0), (26)

where A is the constant.
Following Chandrasekhar [4], the boundary condi-

tions across the interface of the two fluids are:
(i) The normal component of the velocity is contin-

uous, thus we get

w1

(n + ikxU1)
=

w2

(n + ikxU2)
. (27)

(ii) The total pressure should be continuous. This
condition can be obtained by integrating (23) across
the interface z = 0.

(iii) The normal component of the magnetic field is
continuous. This reduces to condition (i).

To satisfy the boundary condition (ii), integrating
(23) across the interface z = 0, we obtain

∆0

{
ρDw

[
n + ikxU +

α0(n + ikxU)
τ(n + ikxU)+ 1

]}

+
H2

x k2
x

4π
∆0

(
Dw

n + ikxU

)
+

H2
y k2

y

4π
∆0

(
Dw

n + ikxU

)

+
kxkyHxHy

2π
∆0

(
Dw

n + ikxU

)

+ gk2∆0(ρ)
(

w
n + ikxU

)
z=0

= 0,

(28)

where ∆0( f ) is the jump that a quantity f experiences at
the interface z = 0 and [w/(n+ ikxU)]z=0 is the unique
value that this quantity has at z = 0.



R. P. Prajapati et al. · K-H and R-T Instability of Magnetized Fluids with Suspended Particles 459

Using the values of w1 and w2 from (25) and (26) in
(28), we obtain the dispersion relation

n2 + 2inkx(β1U1 + β2U2)− k2
x(β1U2

1 + β2U2
2 )

−gk(β2 −β1)+ 2(kxVA + kyVB)2 +
α1β1(n + ikxU1)2

[τ(n + ikxU1)+ 1]

+
α2β2(n + ikxU2)2

[τ(n + ikxU2)+ 1]
= 0, (29)

where α1 = mN/ρ1, α2 = mN/ρ2, β1 = ρ1/(ρ1 + ρ2),
β2 = ρ2/(ρ1 + ρ2), and

V 2
A,B = H2

x,y/4π(ρ1 + ρ2). (30)

Equation (29) represents the influence of the sus-
pended dust particles and of the magnetic field on
the combined hydromagnetic K-H and R-T instabil-
ity of two superimposed fluids. The effect of the sus-
pended dust particles enters into the dispersion relation
(29) through two parameters, α0 and τ , measuring the
mass concentration and the relaxation time of the par-
ticles. If we ignore the effects of the transverse mag-
netic field (VB = 0) and the perturbation in x-direction
(kx = 0) in the dispersion relation (29), this reduces
to Hans’ [19] result excluding FLR corrections, show-
ing the same behavior of neutral particles taken by
him and suspended dust particles taken by us in the
present problem. In the absence of a transverse mag-
netic field (VB = 0) and considering perturbation only
in y-direction (kx = 0), this dispersion relation reduces
to Sanghvi’s and Chhajlani’s [32] formula excluding
the FLR corrections in that case. They have considered
the magnetic field in x-direction and the perturbation
in y-direction and they did not get any contribution of
the magnetic field in the dispersion relation, whereas
in the present case the magnetic field terms are well
appearing in the dispersion relation. Thus the results
in the present problem are an improvement due to the
presence of the magnetic field and because of the three-
dimensional perturbations.

4. Discussions

In order to study the effect of the magnetic field on
the conditions of the K-H and R-T instabilities and on
the growth rates we consider three special cases.

4.1. General Configuration with Magnetic Field

In this subsection we consider the configuration in
the absence of suspended dust particles but with the

magnetic field. In this case (α1 = α2 = 0) the disper-
sion relation (29) reduces to

n2 + 2inkx(β1U1 + β2U2)− k2
x(β1U2

1 + β2U2
2 )

+ gk(β1 −β2)+ 2(kxVA + kyVB)2 = 0.
(31)

We just get the terms showing the effects of
the magnetic field in the dispersion relation. In the
case of Sanghvi and Chhajlani [32], considering two-
dimensional perturbations, the magnetic field did not
appear in the dispersion relation. Thus in the present
case the magnetic field effects on the condition of in-
stability.

The roots of (31) are given by

n = −ikx(β1U1 + β2U2)±{k2
xβ1β2(U1 −U2)2

− [gk(β1 −β2)+ 2(kxVA + kyVB)2]}1/2.
(32)

If we consider the magnetic field effect in the
streaming direction only (i. e. VA �= 0, VB = 0), then re-
lation (32) reduces to Chandrasekhar’s [4] formula (cf.
Eq. 204, Chapt. X). Thus his findings have been modi-
fied by the presence of the magnetic field transverse to
the direction of streaming and by suspended dust parti-
cles. In the absence of both transverse and longitudinal
magnetic fields, (32) reduces to (29) of Sanghvi and
Chhajlani [32]. If we ignore the effect of the transverse
magnetic field and of gravity (i. e. VB = g = 0), rela-
tion (32) reduces to the expression given by D’Silva
and Choudhuri [14] (cf. Eq. 2).

(a) Stable case (β1 > β2)

If β1 > β2, one can observe from (32) that the effect
of the magnetic field is to suppress the K-H instabil-
ity if

k2
xβ1β2(U1 −U2)2

≤ gk(β1 −β2)+ 2(kxVA + kyVB)2.
(33)

In the absence of a transverse magnetic field
(VA �= 0, VB = 0), we obtain the same condition of in-
stability as given by Chandrasekhar [4] (cf. Eq. 205,
Chapt. X). Hence the condition of instability is modi-
fied due to the presence of a transverse magnetic field.
Under the above condition, (32) will not allow any real
positive root of n, which implies stability of the sys-
tem. Thus we conclude that the considered K-H sys-
tem is stabilized for the wavenumbers determined by
the condition (33).
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Also, we find instability if

k2
xβ1β2(U1 −U2)2

> [gk(β1 −β2)+ 2(kxVA + kyVB)2].
(34)

Hence for a given difference in velocity (U1 −U2)
and a given direction of the wave vector kkk, instability
occurs for all wavenumbers

k > g(β1 −β2)
[
β1β2(U1 −U2)2 sin2 θ −2(V 2

A sin2 θ

+ V 2
B cos2 θ + 2VAVB sinθ cosθ )

]−1
, (35)

where θ is the angle between the direction of kkk and Hy.

(b) Unstable case (β1 < β2)

If β1 < β2, it is clear from (32) that the effect of both
the transverse and the longitudinal magnetic field will
suppress the K-H instability if

2(kxVA + kyVB)2

> k2
xβ1β2(U1 −U2)2 + gk(β2 −β1).

(36)

The system is therefore stable under the restric-
tion (36), if

2(kxVA + kyVB)2 < k2
xβ1β2(U1 −U2)2

+ gk(β2 −β1),
(37)

then the K-H configuration remains unstable since one
of the roots of (31) is complex with a positive real part.

Thus for the unstable R-T case β2 > β1, the
configuration is stable or unstable according to
2(kxVA + kyVB)2, being greater than or smaller than
[k2

xβ1β2(U1 −U2)2 + gk(β2 − β1)]. In the absence of
magnetic field, (31) has at least one complex root with
positive real part and so the system is unstable for
β2 > β1.

Therefore the magnetic field has a stabilizing effect
and completely stabilizes the wavenumber band k < k∗,
where

k∗ = g(β2 −β1)
/[

2(VA sinθ +VB cosθ )2

−β1β2 sin2 θ (U1 −U2)2]. (38)

Now considering the case of two streaming fluids in
the absence of the gravitational force (g = 0), we have

n = −ikx(β1U1 + β2U2)±
[
k2

xβ1β2(U1 −U2)2

−2(kxVA + kyVB)2]1/2
.

(39)

Thus, in the absence of gravity the system is stable
or unstable according to 2(kxVA + kyVB)2 being greater
or smaller than k2

xβ1β2(U1 −U2)2.
Corresponding to the case of static fluids (U1 =

U2 = 0) under gravity (R-T configuration) we obtain
from (31)

n2 +gk
(

ρ1 −ρ2

ρ1 + ρ2

)
+2(kxVA + kyVB)2 = 0. (40)

In the absence of a transverse magnetic field
(VA �= 0, VB = 0), the result reduces to Chandrasekhar’s
[4] finding (cf. Eq. 234, Chapt. X).

If (β1 > β2), the system remains always in the stable
state. However when β1 < β2, we find that the system is
unstable for all wavenumbers satisfying the condition

gk
(

ρ2 −ρ1

ρ1 + ρ2

)
> 2(kxVA + kyVB)2. (41)

4.2. Static Configuration with Suspended Dust
Particles

In this subsection we deal with the case of non-
streaming hydromagnetic fluids of different densities
including suspended dust particles. For that case the
dispersion relation (29) reduces to

τ n3 + n2(1 + α1β1 + α2β2)

+ n[2τ(kxVA + kyVB)2 − τgk(β2 −β1)]

+ 2(kxVA + kyVB)2 −gk(β2 −β1) = 0.

(42)

If we ignore the effect of the magnetic field in the
above dispersion relation we get the same results as
have been obtained by Sharma and Chhajlani [25] in
absence of rotation and FLR corrections in that case.
Thus the presence of both the longitudinal and the
transverse magnetic fields modify the results.

Introducing the relaxation frequency parameter
fs(= 1/τ) of the suspended dust particles and simpli-
fying the above equation, we get

n3 + n2 fs(1 + 2α ′)
+ n[2(kxVA + kyVB)2 −gk(β2 −β1)]

+ fs[2(kxVA + kyVB)2 −gk(β2 −β1)] = 0,

(43)

where α ′ = mN/(ρ1 + ρ2) .
We now consider the dynamical stability of the sys-

tem by applying the Routh-Hurwitz criterion on the
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Fig. 2. The growth rate (positive real roots of
n∗) of the unstable R-T mode plotted against the
relaxation frequency f ∗s with variation in parti-
cle density α ′.

dispersion relation (43). If β1 > β2, then all coefficients
of (43) are positive, satisfying the necessary condition
of stability. To obtain the sufficient condition we de-
termine the principal diagonal minors of the Hurwitz
matrix formed by these coefficients. The principal di-
agonal minors are

∆1 = fs(1 + 2α ′) > 0,

∆2 = 2α ′ fs[2(kxVA + kyVB)2 + gk(β1 −β2)] > 0,

∆3 = 2α ′ f 2
s [2(kxVA + kyVB)2 + gk(β1 −β2)]2 > 0,

which are all positive, thereby satisfying the Routh-
Hurwitz criterion. Hence the system represented by
(43) is stable if β1 > β2.

Let us now consider the alternative case β1 < β2.
Then the condition of instability, which is independent
of the suspended dust particles, is given by

2(kxVA + kyVB)2 < gk(β2 −β1). (44)

Under the above restriction, (43) will necessarily pos-
sess one real positive root (n0), which will give insta-
bility to the system.

We obtain the growth rate with increasing relaxation
frequency of the particles (dn0/d fs) from (43)

dn0

d fs
= −[

n2
0(1 + 2α ′)+ 2(kxVA + kyVB)2

−gk(β2 −β1)
]/[

3n2
0 + 2n0 fs(1 + 2α ′)

+ 2(kxVA + kyVB)2 −gk(β2 −β1)
]
.

(45)

The growth rate is found to be negative, if the con-
ditions given below hold simultaneously

n2
0(1+2α ′)+2(kxVA +kyVB)2 > gk(β2−β1), (46)

and

3n2
0 > gk(β2 −β1). (47)

In the present case we are getting the condition of
instability influenced by the magnetic field, whereas in
Sanghvi and Chhajlani [32] there was no term contain-
ing the magnetic field in this condition. From the above
conditions we find that the growth rate of the unstable
modes decreases with increasing relaxation frequency
of the suspended dust particles. Thus we may conclude
that, under the restrictions (46) and (47), the suspended
dust particles have stabilizing influence on the consid-
ered magnetized configuration.

The dispersion relation (43) can be written in dimen-
sionless form using the substitutions

n∗ = n/
√

gk, f ∗s = fs/
√

gk,

V ∗
A =

√
k/g VA, and V ∗

B =
√

k/g VB.

Thus we get

n∗3 + n∗2 f ∗s (1 + 2α ′)
+ n∗[2(V ∗

A sinθ +V ∗
B cosθ )2 − (β2 −β1)]

+ f ∗s [2(V ∗
A sinθ +V ∗

B cosθ )2 − (β2 −β1)] = 0.

(48)
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Fig. 3. The growth rate (positive real roots of
n∗) of the unstable R-T mode plotted against the
relaxation frequency f ∗s with varying magnetic
field. Curves I, II and III are plotted for V ∗

A =
V ∗

B = 0.1, 0.2 and 0.3, respectively.

In order to study the influence of the suspended par-
ticles, the magnetic field and the fluid density on the
growth rate of the unstable R-T modes, we have per-
formed numerical calculations of the dispersion rela-
tion (48) to locate the roots of n∗ (growth rate) against
f ∗s (relaxation frequency of the suspended dust parti-
cles) for several values of α ′, V ∗

A , V ∗
B , θ and difference

of densities (β2 −β1).
In Figure 2 couples of solid and dashed lines (a,a′),

(b,b′) and (c,c′) are drawn for α ′ = 0.2, 0.4, and 1.2,
respectively, for (β2 −β1) = 0.5 and V ∗

A = V ∗
B = 0.15.

The solid lines are plotted for an inclination angle θ =
0◦, while the dashed lines are represent for θ = 45◦.
From Figure 2 we see that the growth rate (positive
real roots of n∗) decreases with increasing relaxation
frequency ( f ∗s ) of the suspended particles as well as
with increasing density (α ′) of the particles and incli-
nation angle θ , thereby showing a stabilizing influence
on the considered R-T configuration. The increase in
fs(= 6πµa/m) suggests an increase in the size (a) of
the particles assuming other parameters to be constant.
In other words, as the size of the particles increases,
the growth rates of the unstable R-T modes decrease.
We also note that the growth rate depends upon the
angle between wave vector kkk and the magnetic field
HHH(Hx, Hy, 0). The growth rate is minimum for larger
values of the inclination angle θ .

Figure 3 shows the effect of an uniform magnetic
field on the growth rate of the unstable R-T mode. The

curves are depicted for various values of V ∗
A and V ∗

B
taking α ′ = 0.5 and β2 −β1 = 0.3. We find that as the
strength of the magnetic field increases the growth rate
of the unstable mode decreases, demonstrating the sta-
bilizing influence of the magnetic field on the growth
rate of the system.

In Figure 4 we show the influence of the density
difference between the fluids on the growth rate of
the unstable R-T mode. The curves represent values
of the density difference β2 − β1 for fixed parameters
θ = 90◦, α ′ = 0.2, and V ∗

A =V ∗
B = 0.5. We observe that

as we increase the fluids density difference, the growth
rate of the unstable mode increases. Hence, an increase
of the density of the upper fluid tends to destabilize the
system.

From these discussions we find that a system as con-
sidered here can be stabilized by increasing the sus-
pended dust particle density and the magnetic field,
while it can be made more and more unstable by in-
creasing the density difference between the upper fluid
(ρ2) and the lower fluid (ρ1).

4.3. K-H Instability with Suspended Dust Particles
and Magnetic Field

The dispersion relation (29) is very complex. To dis-
cuss the implications of suspended dust particles on the
K-H instability, we therefore consider a simple model
in which two fluids of the same density are flowing on
top of each other with streaming velocities U and −U .
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Fig. 4. The growth rate (positive real roots of
n∗) of the unstable R-T mode plotted against
the relaxation frequency f ∗s with variation in the
density difference β2 −β1. Curves I, II and III
are plotted for β2 −β1 = 0.1, 0.2, and 0.3, re-
spectively.

For this case we put α1 = α2 = α0, β1 = β2 = 1/2,
U1 = U and U2 = −U in (29).

We obtain the new dispersion relation

τ2n4 + τn3(2 + α0)

+ n2[(1 + α0)+ 2τ2(kxVA + kyVB)2]

+ τn[k2
xU2(α0 −2)+ 4(kxVA + kyVB)2]

+ [−k2
xU2(τ2k2

xU2 + α0 + 1)

+ 2(τ2k2
xU2 + 1)(kxVA + kyVB)2] = 0.

(49)

In order to discuss the effect of suspended dust par-
ticles and a magnetic field on the growth rate of K-H
instability against the relaxation frequency of the dust
particles, we convert the dispersion relation (49) in an
equation for the frequency by introducing fs = 1/τ (the
relaxation frequency parameter of the suspended dust
particles) and we get

n4 + n3 fs(2 + α0)

+ n2[ f 2
s (1 + α0)+ 2(kxVA + kyVB)2]

+ n fs[k2
xU2(α0 −2)+ 4(kxVA + kyVB)2]

−{
k2

xU2[k2
xU2 + f 2

s (α0 + 1)]

−2(k2
xU2 + f 2

s )(kxVA + kyVB)2} = 0.

(50)

Equation (50) shows the dispersion relation for the
K-H instability of two incompressible fluids of the
same flow velocity, dust particles density and fluid den-
sity including the effects of a magnetic field and of
the suspended dust particles. If we neglect the effect

of the magnetic field, (50) reduces to the findings of
Sanghvi and Chhajlani [32], in absence of FLR cor-
rections in that case. Also, in the absence of a mag-
netic field and of suspended dust particles the disper-
sion relation (50) reduces to Chandrasekhar’s [4] re-
sults. Hence those previous results have been improved
to inculde the presence of a magnetic field and of sus-
pended dust particles.

The condition for the K-H instability of the system
given by the constant term of (50) is

2(k2
xU2 + f 2

s )(kxVA + kyVB)2

< k2
xU2[k2

xU2 + f 2
s (α0 + 1)].

(51)

In writing (50) we have taken notice of the fact that
α0 cannot exceed 1. On examining the dispersion rela-
tion (50) we find that in the absence of a magnetic field
the system will be unstable, but due to the presence of
the magnetic field the condition for the K-H instability
is modified by the magnetic field term in the condition
for the K-H instability along with the flow velocity. Let
n0 denote the positive root of (51). To study the behav-
ior of the growth rates of unstable modes with respect
to fs, we examine the nature of dn0/d fs analytically.
Then (50) yields

dn0

d fs
= −[

n3
0(2 + α0)+ 2n2

0 fs(1 + α0)

+ 4(kxVA + kyVB)2(n0 + fs)−n0k2
xU2(2−α0)

−2k2
xU2 fs(α0 + 1)

]/{
4n3

0 + 3n2
0 fs(2 + α0)
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Fig. 5. The growth rates (positive real roots of
∗n) of the unstable K-H modes plotted against
the relaxation frequency ∗ fs with varying parti-
cle density α0.

+ 2n0[ f 2
s (α0 + 1)+ 2(kxVA + kyVB)2]

+ 4(kxVA + kyVB)2 − fsk2
xU2(2−α0)

}
. (52)

Let us now consider the inequalities

n3
0(2 + α0)+ 2n2

0 fs(1 + α0)

+ 4(kxVA + kyVB)2(n0 + fs)
>
< k2

xU2[n0(2−α0)+ 2 fs(α0 + 1)]

(53)

and

4n3
0 + 3n2

0 fs(2 + α0)+ 2n0[ f 2
s (α0 + 1)

+ 2(kxVA + kyVB)2]+ 4(kxVA + kyVB)2

>
< fsk2

xU2(2−α0).

(54)

If both upper inequalities (53) and (54) are satisfied
simultaneously, we find that dn0/d fs may be negative
and if the upper and lower inequalities or vice versa
hold, then dn0/d fs turns out to be positive. From this
we conclude that the growth rate can both decrease
(for certain wavenumbers) and increase (for different
wavenumbers) with the increase of the relaxation fre-
quency parameter of the suspended particles. A simi-
lar conclusion regarding the effect of suspended par-
ticles has been discussed by Chhajlani et al. [33] in
the context of the R-T instability of a stratified plasma
in the presence of a uniform horizontal magnetic
field.

We introduce some new dimensionless parameters
as

∗n = n/kU, ∗ fs = fs/kU,

∗VA = VA/U, and ∗VB = VB/U.

The substitution of these parameters into (50) gives its
non-dimensionalized form as
∗n4 +∗ n3 ∗ fs(2 + α0)

+ ∗n2[∗ fs
2(1 + α0)+ 2(∗VA sinθ +∗VB cosθ )2]

+ ∗n ∗ fs[(α0 −2)sin2 θ + 4(∗VA sinθ +∗VB cosθ )2]

+{2(sin2 θ +∗ fs
2)(∗VA sinθ +∗VB cosθ )2

− [sin2 θ +∗ fs
2(α0 + 1)]sin2 θ} = 0. (55)

If we put ∗VA = 0, ∗VB �= 0, and θ = 90◦ in (55)
we recover the dispersion relation already obtained by
Sanghvi and Chhajlani [32] for the transverse mode of
propagation.

Numerical calculations were performed to locate the
roots of ∗n from (55) for several values of the pa-
rameters ∗ fs, ∗VA, ∗VB, α0 and θ . The results are pre-
sented in Figures 5 and 6. This representation gives
an idea of the behavior of the effects of the relax-
ation frequency of the suspended dust particles and
the magnetic field on the K-H instability of the con-
sidered configuration. The variation of the growth rate
with θ has also been included to show the influ-
ence of the orientation of the magnetic field with re-
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Fig. 6. The growth rates (positive real roots of
∗ n) of the unstable K-H modes plotted against
the relaxation frequency ∗ fs with varying mag-
netic field (∗VA and ∗VB). The dashed lines are
for θ = 30◦ and the solid lines are for θ = 45◦,
respectively.

spect to the wave vector on the unstable configura-
tion.

In Figure 5 we have plotted the growth rate
against the relaxation frequency to study the ef-
fect of the particle density on the K-H instabil-
ity. The curves are plotted for various values of
the particle density taking ∗VA = ∗VB = 0.20 and
θ = 45◦. It is seen that as one increases the par-
ticle density the growth rate of the unstable K-H
mode decreases. Thus the particle density has a sta-
bilizing influence on the considered K-H configura-
tion.

In Figure 6 we have plotted the growth rate against
the relaxation frequency for magnetic fields ∗VA =
∗VB = 0.1 and 0.24, respectively. The curves a and a′
are for ∗VA = ∗VB = 0.1, and b and b′ are for ∗VA =
∗VB = 0.24. The particle density α0 is chosen to be
0.6. We find that as ∗VA and ∗VB increases, the growth
rate decreases for all the values of θ and ∗ fs, show-
ing the stabilizing influence of the magnetic field. The
growth rate is also seen to be suppressed for small
relaxation frequencies of the suspended particles, al-
though it increases thereafter with increases in ∗ fs. We
conclude that a small relaxation frequency of the sus-
pended particles renders the configuration more stable
but as the relaxation frequency increases beyond a crit-
ical value, the originally stable configuration becomes
unstable. It is also noted from Figure 6, that the growth
rate increases as θ increases, for the same ∗VA, ∗VB,
and α0.

5. Conclusions

In the present paper, a linear analysis of the effect
of suspended dust particles on the K-H and the R-T
configurations has been carried out in the presence of
a uniform magnetic field. The medium is assumed to
be incompressible and certain simplifying assumptions
are made for the motion of the suspended dust parti-
cles. A dispersion relation has been obtained for such
a medium, using appropriate boundary conditions, and
the effect of the magnetic field appeared in the disper-
sion relation due to considerating three-dimensional
perturbations instead of only two-dimensional ones.

In the case of a stable R-T configuration, the consid-
ered system is stabilized for wavenumbers determined
by the new condition. Also, the instability occurs for
all wavenumbers given by the new condition. But for
the case of an unstable R-T configuration the mag-
netic field has a stabilizing effect on the system. It is
found that the growth rate of an unstable R-T mode
decreases with increasing relaxation frequency as well
as with increasing density of the dust particles, thereby
showing a stabilizing influence on the considered R-T
configuration. It is also seen that as the density of the
upper fluid increases in comparison to the lower fluid
(i. e. the density difference between upper and lower
fluid increases), the growth rate also increases. Thus
the growth rate of the unstable mode will be maxi-
mum for two fluids having larger density of the upper
fluid.
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In case of K-H instability, again the effect of mag-
netic field is obtained in the K-H instability condition
due to our present three-dimensional solution of the
problem as compared to previous two-dimensional per-
turbation, where this effect was not seen in the disper-
sion relation and in the condition for the K-H insta-
bility. We observe that the growth rate of the unsta-
ble K-H mode decreases as the dust particle density in-
creases. Also on increasing the magnetic field parame-
ter the growth rate of the system decreases. Hence both
the magnetic field and the density of the dust parti-
cles have a stabilizing influence on the considered K-H
configuration. It is clear that for a given magnetic field
the presence of suspended dust particles tends to sta-
bilize the configuration for the relaxation frequencies

less than a particular value and for relaxation frequen-
cies greater than this value, the effect is destabilizing.

Thus in the present paper we have studied the effects
of magnetic field and of suspended dust particles on the
joint K-H and R-T instabilities of two superimposed
streaming magnetized incompressible fluids.
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