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The thermosolutal instability of couple-stress fluid in the presence of uniform vertical rotation
is considered. Following the linearized stability theory and normal mode analysis, the dispersion is
obtained. For the case of stationary convection, the stable solute gradient and rotation have stabilizing
effects on the system, whereas the couple-stress has both stabilizing and destabilizing effects. The
dispersion relation is also analyzed numerically. The stable solute gradient and the rotation introduce
oscillatory modes in the system, which did not occur in their absence. The sufficient conditions for
the non-existence of overstability are also obtained.
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1. Introduction

The theoretical and experimental results of the on-
set of thermal instability (Bénard convection) in a fluid
layer under varying assumptions of hydrodynamics has
been treated in detail by Chandrasekhar [1] in his cele-
brated monograph. The problem of thermohaline con-
vection in a layer of fluid heated from below and sub-
jected to a stable salinity gradient has been considered
by Veronis [2]. The physics is quite similar in the stel-
lar case in that helium acts like salt in raising the den-
sity and in diffusing more slowly than heat. The condi-
tions under which convective motions are important in
stellar atmospheres are usually far removed from con-
sideration of a single component fluid and rigid bound-
aries, and therefore it is desirable to consider a fluid
acted on by a solute gradient and free boundaries. The
problem of the onset of thermal instability in the pres-
ence of a solute gradient is of great importance because
of its applications to atmospheric physics and astro-
physics, especially in the case of the ionosphere and
the outer layer of the atmosphere. The thermosolutal
convection problems also arise in oceanography, lim-
nology and engineering. Stomell et al. [3] did the pio-
neering work regarding the investigation of thermoso-
lutal convection. This work was elaborated in differ-
ent physical situations by Stern [4] and Nield [5]. A
double-diffusive instability that occurs when a solution
of a slowly diffusing protein is layered over a denser
solution of more rapidly diffusing sucrose, has been
explained by Brakke [6]. Nason et al. [7] found that this
instability, which is deleterious to certain biochemical
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separations, can be suppressed by rotation in the ultra
centrifuge.

The theory of couple-stress fluid has been formu-
lated by Stokes [8]. One of the applications of couple-
stress fluid is its use to the study of the mechanisms
of lubrications of synovial joints, which has become
the object of scientific research. A human joint is a dy-
namically loaded bearing which has articular cartilage
as the bearing and synovial fluid as the lubricant. When
a fluid is generated, squeeze-film action is capable of
providing considerable protection to the cartilage sur-
face. The shoulder, ankle, knee, and hip joints are the
loaded-bearing synovial joints of the human body and
these joints have a low friction coefficient and negli-
gible wear. Normal synovial fluid is a viscous, non-
Newtonian fluid and is generally clear or yellowish.
According to the theory of Stokes [8], couple-stresses
appear in noticeable magnitudes in fluids with very
large molecules.

Many of the flow problems in fluids with couple-
stresses, discussed by Stokes, indicate some possible
experiments, which could be used for determining the
material constants, and the results are found to dif-
fer from those of Newtonian fluid. Couple-stresses are
found to appear in noticeable magnitudes in polymer
solutions for force and couple-stresses. This theory is
developed in an effort to examine the simplest gen-
eralization of the classical theory, which would allow
polar effects. The constitutive equations proposed by
Stokes [8] are:

T(i j) = (−p + λ Dkk)δi j + 2µDi j,
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T[i j] = −2ηWi j.kk − ρ
2

εεε i jsGs,

and

Mi j = 4ηωωω j,i + 4η ′ωωω i, j,

where

Di j =
1
2
(Vi, j +Vj,i), Wi j = −1

2
(Vi, j −Vj,i)

and ωωω i = 1
2εεε i jkVk, j.

Here Ti j, T(i j), T[i j], Mi j, Di j, Wi, j, ωωω i, Gs, εεε i jk, V ,
ρ , and λ , µ , η , η ′, are stress tensor, symmetric part of
Ti j, anti-symmetric part of Ti j , the couple-stress ten-
sor, deformation tensor, the vorticity tensor, the vor-
ticity vector, body couple, the alternating unit tensor,
velocity field, the density, and material constants, re-
spectively. The dimensions of λ and µ are those of vis-
cosity whereas the dimensions of η and η ′ are those of
momentum.

Since the long chain hyaluronic acid molecules are
found as additives in synovial fluids, Walicki and Wal-
icka [9] modeled the synovial fluid as a couple-stress
fluid. The synovial fluid is the natural lubricant of
joints of the vertebrates. The detailed description of
the joint lubrication has very important practical im-
plications. Practically all diseases of joints are caused
by or connected with a malfunction of the lubrication.
The efficiency of the physiological joint lubrication is
caused by several mechanisms. The synovial fluid is,
due to its content of the hyaluronic acid, a fluid of high
viscosity, near to a gel. Goel et al. [10] have studied
the hydromagnetic stability of an unbounded couple-
stress binary fluid mixture under rotation with verti-
cal temperature and concentration gradients. Sharma et
al. [11] have considered a couple-stress fluid with sus-
pended particles heated from below. They have found
that for stationary convection, couple-stress has a stabi-
lizing effect whereas suspended particles have a desta-
bilizing effect. In another study, Sunil et al. [12] have
considered a couple stress fluid heated from below in a
porous medium in the presence of a magnetic field and
rotation. Kumar et al. [13] have considered the thermal
instability of a layer of a couple-stress fluid acted on by
a uniform rotation, and have found that for stationary
convection, the rotation has a stabilizing effect whereas
couple-stress has both stabilizing and destabilizing ef-
fects.

Keeping in mind the importance in geophysics, soil
sciences, ground water hydrology, astrophysics and

various applications mentioned above, the thermoso-
lutal convection in couple-stress fluid in the presence
of uniform vertical rotation has been considered in the
present paper.

2. Formulation of the Problem and Perturbation
Equations

Here we consider an infinite, horizontal incompress-
ible couple-stress fluid layer of thickness d, heated and
soluted from below so that the temperatures, densities
and solute concentrations at the bottom surface z = 0
are T0, ρ0 and C0, and at the upper surface z = d are
Td , ρd and Cd , respectively, and that a uniform temper-
ature gradient β = |dT/dz| and a uniform solute gra-
dient β ′ = |dC/dz| are maintained. The gravity field
g(0,0,−g) and a uniform vertical rotation ΩΩΩ(0,0,Ω)
act on the system.

Let Ti j , τττ i j, ei j, δδδ i j, µ , µ ′, vi and xi denote the stress
tensor, shear stress tensor, rate-of-strain tensor, Kro-
necker delta, viscosity, couple-stress viscosity, velocity
vector and position vector, respectively. The constitu-
tive relations for the couple-stress fluids are

Ti j = −pδi j + τi j,

τττ i j = 2(µ − µ ′ 2)ei j,

ei j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
.

Let p, ρ , T , C, α , α ′, g(0,0,−g) and q(u,v,w) de-
note, respectively, the fluid pressure, density, temper-
ature, solute concentration, thermal coefficient of ex-
pansion, an analogous solvent coefficient of expansion,
gravitational acceleration and fluid velocity. The equa-
tions expressing the conservation of momentum, mass,
temperature, solute concentration and equation of state
of couple-stress fluid [1, 2, 8] are

∂q
∂t

+(q· )q = − 1
ρ0

p + g
(

1 +
δρ
ρ0

)

+
(

ν − µ ′

ρ0

2
)

2q+ 2(q×ΩΩΩ),

(1)

·q = 0, (2)

∂T
∂t

+(q· )T = χ 2T, (3)

∂C
∂t

+(q· )C = χ ′ 2C, (4)
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ρ = ρ0[1−α(T −T0)+ α ′(C−C0)], (5)

where the suffix zero refers to the values at the refer-
ence level z = 0 and in writing (1) use has been made
of Boussinesq approximation. The viscosity µ , couple-
stress viscosity µ ′, kinematic viscosity ν , thermal dif-
fusivity χ and the analogous solute diffusivity χ ′ are all
assumed to be constants. The steady state solution is

q = (0,0,0), T = T0 −β z, C = C0 −β ′z,
ρ = ρ0(1 + αβ z−α ′β ′z′),

(6)

where β = (T0 −T1)/d and β ′ = (C0 −C1)/d are the
magnitudes of uniform temperature and concentration
gradients and are both positive as temperature and con-
centration decrease upwards.

Let δ p, δρ , θ , γ and q(u,v,w) denote, respectively,
the perturbations in pressure p, density ρ , tempera-
ture T , solute concentration C and velocity q(0,0,0).
The change in density δρ , caused mainly by the per-
turbations θ and γ in temperature and concentration, is
given by

δρ = −ρ0(αθ −α ′γ). (7)

Then the linearized hydrodynamic perturbation equa-
tions are

∂q
∂t

= − 1
ρ0

δ p−g(αθ −α ′γ)

+
(

ν − µ ′

ρ0

2
)

2q+ 2(q×ΩΩΩ),
(8)

·q = 0, (9)

∂θ
∂t

= β w+ χ 2θ , (10)

∂γ
∂t

= β ′w+ χ ′ 2γ. (11)

Within the framework of the Boussinesq approxima-
tion, (8) – (11) give

∂
∂t

2w−g

(
∂2

∂x2 +
∂2

∂y2

)
(αθ −α ′γ)+ 2Ω

∂ζ
∂z

=
(

ν − µ ′

ρ0

2
)

4w,

(12)

∂ζ
∂t

−2Ω
∂w
∂z

=
(

ν − µ ′

ρ0

2
)

2ζ , (13)

(
∂
∂t

− χ 2
)

θ = β w, (14)

(
∂
∂t

− χ ′ 2
)

γ = β ′w, (15)

where 2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
and ζ = ∂v

∂x
− ∂u

∂y
denotes

the z-component of the vorticity.

3. Dispersion Relation

We now analyze the disturbances into normal
modes, assuming that the perturbation quantities are of
the form

[w,θ ,γ,ζ ] =

[W (z),Θ(z),Γ (z),Z(z)]exp(ikxx + ikyy + nt),
(16)

where kx, ky are the wave numbers along x- and y-

directions, respectively, k = (
√

k2
x + k2

y) is the resultant
wave number and n is the growth rate which is, in gen-
eral, a complex constant.

Using expression (16), (12) – (15) in non-
dimensional form become[

σ(D2 −a2)W +
ga2d2

ν
(αΘ −α ′Γ )+

2Ωd3

ν
DZ
]

=

[1−F(D2 −a2)](D2 −a2)2W, (17)

[σ −{1−F(D2−a2)}(D2−a2)]Z =
2Ωd

υ
DW, (18)

(D2 −a2 − p1σ)Θ = −
(

β d2

χ

)
W, (19)

(D2 −a2 −qσ)Γ = −
(

β ′d2

χ ′

)
W, (20)

where we have put a = kd, σ = nd2

ν , x
d = x∗, y

d = y∗,
z
d = z∗, and D = d

dz∗ . Here p1 = ν
χ is the Prandtl num-

ber, q = ν
χ ′ is the Schmidt number, and F = µ ′

ρ0d2ν is a
dimensionless couple-stress parameter.

We consider the case where both boundaries are
free as well as perfect conductors of both heat and so-
lute concentrations. The case of two free boundaries
is a little artificial but it enables us to find analytical
solutions and to make some qualitative conclusions.
The appropriate boundary conditions, with respect to
which (17) – (20) must be solved, are

W = D2W = D4W = 0, Θ = 0, Γ = 0,

DZ = 0, at z∗ = 0 and 1.
(21)
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The case of two free boundaries, though little artificial,
is the most appropriate for stellar atmospheres [14].
Dropping the stars for convenience and using the above
boundary conditions, it can be shown that all the even
order derivatives of W must vanish on the boundaries
and hence, the proper solution of W charactering the
lowest mode is

W = W0 sinπz, (22)

where W0 is a constant.
Eliminating Θ , Γ and Z between (17) – (20) and

substituting the proper solution W = W0 sinπz, in the
resultant equation, we obtain the dispersion relation

R1 =
(

1 + x
x

)
(1 + x + ip1σ1)

· [iσ1 +{1 + F1(1 + x)}(1 + x)]

+ S1
(1 + x + ip1σ1)
(1 + x + iqσ1)

+ TA1

(1 + x + ip1σ1)
x[iσ1 +{1 + F1(1 + x)}(1 + x)]

,

(23)

where R1 = gαβ d4

υχπ4 , S1 = gα ′β ′d4

υχ ′π4 , TA1 = 4Ω2d4

ν2π4 =(
2Ωd2

νπ2

)2
, x = a2

π2 , F1 = π2F , and σ
π2 = iσ1.

4. The Stationary Convection

When the instability sets in as stationary convection,
marginal state will be characterized by σ = 0. Putting
σ = 0, the dispersion relation (23) reduces to

R1 =
(1 + x)3

x
[1 + F1(1 + x)]+ S1

+ TA1

1
x[1 + F1(1 + x)]

.
(24)

To study the effect of stable solute gradient, rotation
and couple-stress parameter, we examine the nature of
dR1
dS1

, dR1
dTA1

and dR1
dF1

analytically.
Equation (24) yields

dR1

dS1
= +1, (25)

dR1

dTA1

=
1

x[1 + F1(1 + x)]
, (26)

dR1

dF1
=
(

1 + x
x

)[
(1 + x)3 − TA1

[1 + F1(1 + x)]2

]
, (27)

Fig. 1. Variation of R1 with x for a fixed F1 = 5, TA1 = 50,
for different values of S1(= 10,15,20).

Fig. 2. Variation of R1 with x for a fixed F1 = 5, S1 = 25, for
different values of TA1(= 50,150,250).

Fig. 3. Variation of R1 with x for a fixed S1 = 10, TA1 = 200,
for different values of F1(= 5,10,15).
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which imply that stable solute gradient and rotation
have stabilizing effects on the system whereas couple-
stress parameter has both stabilizing and destabilizing
effects on the system in the presence of rotation.

Graphs have been plotted between R1 and x for vari-
ous values of S1, TA1 and F1. It is also evident from Fig-
ures 1 – 3 that stable solute gradient and rotation have
stabilizing effects and couple-stress parameter has both
stabilizing and destabilizing effects on the system.

5. Stability of the System and Oscillatory Modes

Here we examine the possibility of oscillatory
modes, if any, on the stability problem due to the pres-
ence of stable solute gradient and rotation. Multiply-
ing (17) by W ∗, the complex conjugate of W , integrat-
ing over the range of z and making use of (18) – (20)
together with the boundary conditions (21), we obtain

σ I1 + I2 − gαχa2

νβ
[I3 + p1σ∗I4]+

gα ′χ ′a2

νβ ′ [I5 + qσ∗I6]

+ d2[I7 + σ∗I8 + FI9]+ FI10 = 0, (28)

where

I1 =
1∫

0

(|DW |2 + a2|W |2)dz,

I2 =
1∫

0

(|D2W |2 + 2a2|DW |2 + a4|W |2)dz,

I3 =
1∫

0

(|DΘ |2 + a2|Θ |2)dz, I4 =
1∫

0

|Θ |2dz,

I5 =
1∫

0

(|DΓ |2 + a2|Γ |2)dz, I6 =
1∫

0

|Γ |2dz,

I7 =
1∫

0

(|DZ|2 + a2|Z|2)dz, I8 =
1∫

0

(|Z|2)dz,

I9 =
1∫

0

(|D2Z|2 + 2a2|DZ|2 + a4|Z|2)dz,

I10 =
1∫

0

(|D3W |2 + 3a2|D2W |2

+ 3a4|DW |2 + a6|W |2)dz,

(29)

and σ∗ is the complex conjugate of σ . The integrals
I1 − I10 are all positive definite.

Putting σ = σr + iσi in (28) and equating real and
imaginary parts, we have

σr

(
I1 − gαχa2

νβ
p1I4 +

gα ′χ ′a2

νβ ′ qI6 + d2I8

)
=

−
(

I2 − gαχa2

νβ
I3 +

gα ′χ ′a2

νβ ′ I5 + d2I7

+ d2FI9 + FI10

)
,

(30)

and

σi

(
I1 +

gαχa2

νβ
p1I4 − gα ′χ ′a2

νβ ′ qI6 −d2I8

)
= 0. (31)

Equation (30) yields that σr may be positive or nega-
tive, i. e. there may be stability or instability in the pres-
ence of solute gradient and rotation in couple-stress
fluid. It is clear from (31) that σi = 0 or σi 	= 0, which
means that the modes may be non-oscillatory or oscil-
latory.

From (31) it is clear that σi is zero when the quan-
tity multiplying it is not zero and arbitrary when this
quantity is zero.

If σi 	= 0, then (31) gives

I1 =
gα ′χ ′a2

νβ ′ qI6 − gαχa2

νβ
p1I4 + d2I8. (32)

Substituting in (30), we have

2σrI1 + I2 +
gα ′χ ′a2

νβ ′ I5 + d2I7 + d2FI9 + FI10

=
gαχa2

νβ
I3.

(33)

Equation (33) on using Rayleigh-Ritz inequality gives:

(π2 + a2)3

a2

1∫
0

|W |2dz+
(π2 + a2)

a2

{
FI10 + d2FI9

+ d2I7 +
gα ′χ ′a2

νβ ′ I5 + 2σrI1

}
≤ gαχ

νβ

1∫
0

|W |2dz.

(34)

Therefore, it follows from (34) that

[
27π4

4
− gαχ

νβ

] 1∫
0

|W |2dz+
(π2 + a2)

a2

{
FI10 + d2FI9

+ d2I7 +
gα ′χ ′a2

νβ ′ I5 + 2σrI1

}
≤ 0, (35)
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since the minimum value of (π2+a2)3

a2 with respect to a2

is 27π4

4 .
Now, let σr ≥ 0, we necessarily have from (35)

gαχ
νβ

>
27π4

4
. (36)

Hence, if

gαχ
νβ

≤ 27π4

4
, (37)

then σr < 0. Therefore, the system is stable.
We summarize, under condition (37), the system is

stable and under condition (36) the system becomes
unstable.

In the absence of stable solute gradient and rotation,
(31) reduces to

σi

(
I1 +

gαχa2

νβ
p1I4

)
= 0, (38)

and the terms in brackets are positive definite. Thus,
σi = 0, which means that oscillatory modes are not al-
lowed and the principle of exchange of stabilities is
valid for the couple-stress fluid in the absence of sta-
ble solute gradient and rotation. The presence of each,
the stable solute gradient and the rotation brings oscil-
latory modes (as σi may not be zero) which were non-
existent in their absence.

6. The Case of Overstability

Here we discuss the possibility of instability or over-
stability. Since we wish to determine critical Rayleigh
number for the onset of instability via a state of pure
oscillations, it suffices to find conditions for which (23)
will admit a solution with σ1 real.

Equating the real and imaginary parts of (23) and
eliminating R1 between them and setting c1 = σ2

1 , b =
1 + x, we obtain

A2c2
1 + A1c1 + A0 = 0, (39)

where

A2 = [1 + p1(1 + F1b)]q2b2,

A1 = S1(b−1)b(p1−q)+ TA1q2b(p1 −1)

+ b4{1 + q2(1 + F1b)2}{1 + p1(1 + F1b)}
+ TA1 p1q2F1b2,

A0 = S1(b−1)(1 + F1b)2b3(p1 −q)+ TA1b3(p1 −1)

+ b6(1 + F1b)2{1 + p1(1 + F1b)}+ TA1 p1b4F1.

(40)

Since σ1 is real for overstability, both the values of c1
(= σ2

1 ) are positive. Equation (39) is quadratic in c1
and does not involve any of its roots to be positive,if

p1 > q and p1 > 1, (41)

which imply that

χ < χ ′ and χ < ν. (42)

Thus χ < χ ′ and χ < ν are the sufficient conditions
for the non-existence of overstability, the violation of
which does not necessarily imply the occurrence of
overstability.

7. Conclusions

The effect of uniform vertical rotation on thermoso-
lutal convection in a layer of couple-stress fluid heated
and soluted from below is considered in the present
paper. The investigation of thermosolutal convection
is motivated by its interesting complexities as a dou-
ble diffusion phenomena as well as its direct relevance
to geophysics and astrophysics. The main conclusions
from the analysis of this paper are as follows:

(i) For the case of stationary convection, the stable
solute gradient and rotation have stabilizing effects on
the system, whereas the couple-stress parameter has
both stabilizing and destabilizing effects.

(ii) It is also observed from the Figures 1-3 that sta-
ble solute gradient and rotation have stabilizing effects
whereas couple-stress parameter has both stabilizing
and destabilizing effects on the system.

(iii) It is observed that the presence of each, the sta-
ble solute gradient and the rotation, brings oscillatory
modes in the system, which were non-existent in their
absence.

(iv) It is found that if gαχ
νβ ≤ 27π4

4 , the system is sta-

ble and under the condition gαχ
νβ > 27π4

4 , the system
becomes unstable.

(v) It is observed that in the absence of stable so-
lute gradient and rotation, oscillatory modes are not al-
lowed and the principle of exchange of stabilities is
valid.

(vi) The conditions χ < χ ′ are χ < ν are sufficient
for the non-existence of overstability, the violation of
which does not necessarily imply the occurrence of
overstability.
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