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We consider a Hamilton operator in a finite dimensional Hilbert space with energy level crossing.
We discuss the question how energy level crossing and entanglement of states in this Hilbert space
are intertwined. Since energy level crossing is related to symmetries of the Hamilton operator we also
derive these symmetries and give the reduction to the invariant Hilbert subspaces.
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1. Introduction

A basic problem in quantum mechanics is the cal-
culation of the energy spectrum of a given (hermi-
tian) Hamilton operator Ĥ. It is assumed that the her-
mitian Hamilton operator acts in a Hilbert space H.
Here we assume we have a finite dimensional Hilbert
space. Thus the spectrum is discrete. In many cases
the Hamilton operator depends on a real parame-
ter. The question whether or not energy levels can
cross by changing the parameter was first discussed
by Hund [1]. He studied examples only and conjec-
tured that, in general no crossing of energy levels can
occur. In 1929 von Neumann and Wigner [2] inves-
tigated this question more rigorously and found the
following theorem: Real symmetric matrices (respec-
tively the hermitian matrices) with a multiple eigen-
value form a real algebraic variety of codimension 2
(respectively 3) in the space of all real symmetric ma-
trices (respectively all hermitian matrices). This im-
plies the famous “non-crossing rule” which asserts that
a “generic” one parameter family of real symmetric
matrices (or two-parameter family of hermitian ma-
trices) contains no matrix with multiple eigenvalue.
“Generic” means that if the Hamilton operator Ĥ ad-
mits symmetries the underlying Hilbert space has to
be decomposed into invariant Hilbert subspaces using
group theory [3]. Meanwhile a large number of re-
searcher have studied energy level crossing (see [4] and
references therein).

Entanglement of states in finite-dimensional Hilbert
spaces (dimH≥ 4) has been investigated by many au-
thors (see [5], [6] and references therein). The measure
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of entanglement for bipartite states are the von Neu-
mann entropy, concurrence and the 2-tangle.

2. Theory

We consider the Hilbert space C
4 and the Hamilton

operator

Ĥ = h̄ω(σz ⊗σz)+ ∆(σx ⊗σx),

where ω > 0 and ∆ > 0. The Hamilton operator shows
energy level crossing and the unitary operator U(t) =
exp(−iĤt/h̄) can generate entangled states from unen-
tangled states.

The eigenvalues of Ĥ are given by

E1 = h̄ω + ∆, E2 = −(h̄ω + ∆),

E3 = −h̄ω + ∆, E4 = h̄ω −∆

with the corresponding normalized eigenvectors

|Φ+〉 =
1√
2




1
0
0
1


, |Ψ−〉 =

1√
2




0
1
−1
0


,

|Ψ+〉 =
1√
2




0
1
1
0


, |Φ−〉 =

1√
2




1
0
0
−1


 .

Note that the states do not depend on the parameters
ω and ∆. These states are the Bell states [4]. The Bell
states are fully entangled. As a measure of entangle-
ment we can apply the tangle which is the squared
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concurrence. The concurrence C for a pure state |ψ〉
in H = C4 is given by

C = 2
∣∣∣∣det

(
c00 c01
c10 c11

)∣∣∣∣
with the state |ψ〉 written in the form

|ψ〉 =
1

∑
j,k=0

c jk| j〉⊗ |k〉,

and | j〉 ( j = 0,1) denotes the standard basis in C2.
Energy level crossing occurs if ∆ = h̄ω . Then we

have the eigenvalues E1 = 2h̄ω , E3 = 0, E4 = 0, E2 =
−2h̄ω . For the degenerate eigenvalue 0 we have the
eigenvectors

|Ψ+〉 =
1√
2




0
1
1
0


, |Φ−〉 =

1√
2




1
0
0
−1


 .

Since we have energy level crossing the Hamilton op-
erator Ĥ admits a symmetry. We have

[σx ⊗σx,σz ⊗σz] = 0 .

Thus

[Ĥ,σx ⊗σx] = 0, [Ĥ,σz ⊗σz] = 0 .

Now both { I2 ⊗ I2,σx ⊗ σx } and { I2 ⊗ I2, σz ⊗ σz }
form a group under matrix multiplication, where I2
is the 2× 2 identity matrix. Both can be used to find
the reduction to Hilbert subspaces. Consider first the
group { I2 ⊗ I2, σx ⊗σx }. The character table provides
the projection operators

Π1 =
1
2
(I2 ⊗ I2 + σx ⊗σx),

Π2 =
1
2
(I2 ⊗ I2 −σx ⊗σx) .

The projection operator Π1 projects into a two-
dimensional Hilbert space spanned by the Bell states

1√
2




1
0
0
1


,

1√
2




0
1
1
0




with the corresponding matrix for the Hamilton opera-
tor (

h̄ω −∆ 0
0 −h̄ω −∆

)
.

The projection operator Π2 projects into a two-
dimensional Hilbert space spannded by the Bell states

1√
2




1
0
0
−1


,

1√
2




0
1
−1
0




with the corresponding matrix for the Hamilton opera-
tor (

h̄ω + ∆ 0
0 −h̄ω + ∆

)
.

Consider now the group { I2 ⊗ I2, σz ⊗σz }. The char-
acter table provides the projection operators

Π1 =
1
2
(I2 ⊗ I2 + σz ⊗σz),

Π2 =
1
2
(I2 ⊗ I2 −σz ⊗σz) .

The projection operator Π1 projects into a two-
dimensional Hilbert space spanned by elements of the
standard basis


1
0
0
0


 ,




0
0
0
1




with the corresponding matrix for the Hamilton opera-
tor (

h̄ω ∆
∆ h̄ω

)
.

The projection operator Π2 projects into a two-
dimensional Hilbert space spanned by the elements of
the standard basis


0
1
0
0


 ,




0
0
1
0




with the corresponding matrix for the Hamilton opera-
tor (−h̄ω ∆

∆ −h̄ω

)
.

Note that the elements of these two groups are ele-
ments of the Pauli group P2 which is defined by

Pn := { I2, σx, σy, σz }⊗n ⊗{±1,±i}
where I2 is the 2×2 identity matrix.
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Next we look at the time evolution U(t) =
exp(−iĤt/h̄). We obtain

exp(−iĤt/h̄) = e−iωt(σz⊗σz)e−it∆(σx⊗σx)/h̄ .

Since

e−iωt(σz⊗σz) = I4 cos(ωt)+ i(σz ⊗σz)sin(ωt)

and

e−i∆t(σx⊗σx)/h̄) = I4 cos(t∆/h̄)+ i(σx⊗σx)sin(t∆/h̄)

we obtain

e−iĤt/h̄ = I4 cos(ωt)cos(t∆/h̄)

+ i(σz ⊗σz)sin(ωt)cos(t∆/h̄)

+ i(σx ⊗σx)cos(ωt)sin(t∆/h̄)

− (σzσx)⊗ (σzσx)sin(ωt)sin(t∆/h̄) .
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Applying U(t) to the unentangled state (1000)T yields

U(t)




1
0
0
0


 =




cos(ωt)cos(t∆/h̄)+ i sin(ωt)cos(t∆/h̄)
0
0

−sin(ωt)sin(∆t/h̄)+ i cos(ωt)sin(t∆/h̄)


 .

Depending on t, ω and ∆ we can obtain entangled
states using the concurrence as measure. For the case
h̄ω = ∆ (level crossing) the state reduces to




cos2(ωt)+ i sin(ωt)cos(ωt)
0
0

−sin2(ωt)+ i cos(ωt)sin(ωt)


 .

The results given above can be extend to the Hamilton
operator

Ĥ = h̄ω(
N-factors︷ ︸︸ ︷

σz ⊗σz ⊗·· ·⊗σz)+∆(
N-factors︷ ︸︸ ︷

σx ⊗σx ⊗·· ·⊗σx)

with N > 2 and N even. For this case we also have

[σx ⊗σx ⊗·· ·⊗σx,σz ⊗σz⊗·· ·⊗σz] = 0 .


