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In this paper, the variational iteration method is proposed to solve Fredholm’s nth-order integro-
differential equations. The initial approximation is selected wisely which satisfies the initial condi-
tions. The results reveal that this method is very effective and convenient in comparison with other

methods.
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1. Introduction

The variational iteration method [1,2], which is
a modified general Lagrange multiplier method, has
been shown to solve effectively, easily, and accu-
rately a large class of nonlinear problems with ap-
proximations which converges (locally) to accurate so-
lutions (if certain Lipschitz-continuity conditions are
met). It was successfully applied to autonomous ordi-
nary differential equations and nonlinear partial dif-
ferential equations with variable coefficients [3], to
Schrodinger-KdV, generalized KdV and shallow wa-
ter equations [4], to Burgers’ and coupled Burgers’
equations [5], to the linear Helmholtz partial differen-
tial equation [6], and recently to nonlinear fractional
differential equations with Caputo differential deriva-
tive [7], and other fields [8 — 10]. Also, the variational
iteration method is applied to fourth-order Volterra’s
integro-differential equations [11] and J. H. He used it
for solving some integro-differential equations [12] by
choosing the initial approximate solution in the form of
a exact solution with unknown constants. On the other
hand, Golbabai and Javidi solved the nth-order integro-
differential equations [13] by transforming to a system
of ordinary differential equations and using the homo-
topy method.

The purpose of this paper is to extend the analysis of
the variational iteration method for solving the general
nth-order integro-differential equations as follows:

b
YW+ L0y + [ Wy (dr = g, ()
a<x<b,

with initial conditions

y(a) = ao,
/ " (n—1) (2)
y(a):alay(a):(XZa"'ay (Cl):(xn_l,
where o, i =0,1,...,n— 1, are real constants, m and

n are integers with m < n. In (1) the functions f, g and
w are given, and the solution y should be determined.
We assume that (1) has a unique solution. In addition,
we compare results with other methods in Section 3. It
is shown that this method is very simple and effective.
Finally one conclusion is stated in Section 4.

2. Variational Iteration Method

To illustrate the basic concept of the variational iter-
ation method, we consider the following general non-
linear system:

Lly(x)] +Nyx)] = w(x),

where L is a linear operator, N is a nonlinear operator
and y(x) is a given continuous function. According to
the variational iteration method [8, 14, 15], we can con-
struct a correction functional in the form

en () =0 + [ 26l

+ Ni(s) — w(s)]ds,
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where yo(x) is an initial approximation with possi-
ble unknowns, A is a Lagrange multiplier which can
be identified optimally via variational theory, the sub-
script k denotes the kth approximation, and Jj is con-
sidered as a restricted variation [8], i.e. 0y, = 0. It is
shown this method is very effective and easy for a lin-
ear problem, its exact solution can be obtained by only
one iteration, because A can be exactly identified. It
should be specially pointed out that the variational it-
eration method is a powerful method for engineering
applications [16—-22].

For solving (1) by the variational iteration method,
for simplicity, we consider all terms as restricted vari-
ations except y (x). According to the variational it-
eration method, we derive a correction functional as
follows:

yk+1

—n)+ [ A6 )+ 16)506)

+/ (s,0)F

and the stationary condition of the above correction
functional can be expressed as

")(s) =
+(=

t)dr —g(s)|ds

1)n lln 1) ()\szx:&
(s)|v +=0,

( )s=x =0,
withi=1,2,...,n—2.

The Lagrange multiplier, therefore, can be identified as

(=D"
(n—1)!

and as a result, we obtain the following iteration for-
mula:

(s —)c)"_1

Als) =

—1)"

e () =)+ [

o (n—1)!

IO+ [ w0 () g(s)]as.

(s =0 ()
3)

3. Applications

In this section, we present some examples to show
efficiency and high accuracy of the variational iteration
method for solving (1).
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Example 3.1. Let us first consider the integro-
differential equation

1 1
Y(x)=1- —x+/ xty(t)dt
3 0
with the exact solution

y(x) =x.

According to (3) we have the following iteration for-

mulae:
sea=nt)— [ i) - 14+ 3 [ stmtnar s

Now, we choose the initial approximation yg = 0 which
satisfies the initial condition. Then we obtain

1
n=x- e,
1
y2=x— o,
1 2
y3=xX— @X s
_ [
A= 30m
1 2
Y5 24576
I T
Y10 =X 805306368
1 2
Y16 =X 5 11106232532992™

It is obvious that the iterations converge to the exact
solution and the results are exactly the same that were
obtained with the homotopy perturbation method [13].
We can see it does not need to transform into the sys-
tem of ordinary differential equations and also, it is ap-
plied very convenient.

Example 3.2. Consider the problem with n =2 and
m =1 as follows:

1
y'(x)=¢" —x—i—/ xty(t)dt
0

with the exact solution

y(x) =e'.
According to (3) we have the following iteration for-
mulation:
Yier1(X) = ye(x +/ s—x )—€'+s

1
—/ styk(t)dt}ds
0
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with the initial approximation yg = x+ 1, which satis-
fies the initial conditions. Then we will have the below
approximations:

yi(x) =€ — %X3,

) =€~ o

y3(x) =e" — %XS’

vax) =" — 9721%)63’

ys(x) =e'— m’;’

o) =e'— 7085880(1)0000000"3'

It is obvious that the iterations converge to the exact
solution and we can see that the above results are better
than the results obtained from homotopy method [13].
As example, the comparisons of the two methods for
some iterations:

5
1

5 _ L 3
yhom(x) - i:zlvz =e' - 1080x )

8 i 1 3

—_ . —_— x

Yhom (¥) = l;v’ =% T 31007

10 - 1 3
Yhom () =} Vi =€ = it

Il
—_

Example 3.3. Consider the third-order integro-
differential equation

y" (x) = sin(x) —x + /7 xty'(t)dt,
0

with the exact solution

y(x) = cos(x).
Using the variational iteration method (3) with the ini-

tial approximation yo(x) = —%xz + 1 which satisfies
initial conditions, gives

Yir1(x) = ye(x) — /Ox %(s —x)2 [y;c”(s) —sin(s) +s

—/2 styﬁc(t)dt} ds.
0

]
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Table 1. Error of numerical results for Example 3.3.
X HPM,N=5 VIM,N=5 HPM,N=8 VIM,N=38
0.2 7.4074e-6 2.0095e-7 2.4691e-8 6.5092¢-9
04  5.925%-5 3.2152e-6 1.9753e-7 1.0414e-7
0.6  2.0000e-4 1.6277e-5 6.6667e-7 5.2725e-7

Then, we have the following primary approximations:

yi(x) —cos(x)—i—%?r =
1 4 s 1 4.8
= T — T
Ya(x) = cos(x) + 5705 552060
1 134 1 10 4
= —— - —— 1
y3() = cosx+ e 600™ ¥ 22118400 ° 1
_ 1 415
Yalx) = eos(x) + S22 e 64000
1 418
509607936000 ©
1 4_23
p— ﬂ
Ys(x) = cos(x) + 1253618560000
_ 1 4_20
20384317440000" ©
y6(x) = cos(x) — 0.0000400364400x*,
y7(x) = cos(x) 4+ 0.00001276243625 x*,
yg(x) = cos(x) — 0.00000406828825 x*.

In order to show the efficiency and high accuracy of the
presented method we report the absolute error which is
defined by

E)’N(x) = |)’exact(x) _vaim(x)|~

In Table 1, we listed the results obtained by variational
iteration method (VIM) compared with those given by
the homotopy perturbation method (HPM). As we see
from Table 1, it is clear that the results obtained by
the presented method are very superior to that obtained
by HPM. Also, the perform of VIM method is very
simple.

Example 3.4.
equation

Consider the integro-differential

1
Y0 = e +e —x+ [y ¥(0) =0,

with the exact solution

X

y(x) = xe*.
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Using the variational iteration method (3) with the ini-
tial approximation yo(x) = x which satisfies the initial
conditions, gives

Yier1(x) = yi(x) —/OX {yi(s) —se’—e'+s
_/Olsyk(t)dt} ds.

Now, we can obtain the following approximations:

y1(x) = xe* — %xz,

ya(x) = xe* — %xz,

y3(x) = xe* — ﬁxz,

ya(x) = xe* — %xz,

ys(x) = xe* — ﬁxz,
ye(x) = xe* — ﬁxz,
yrle) = e’ = 1861624 <
yg(x) = xe* — %9744)62,
yo(x) = xe* — m;&
yio(x) = xe* — mxz.

The absolute error of the results is given in Table 2. We
also compared our results with the results obtained by
the differential transformation method (DTM) in [23].
It is clear that the results obtained by the presented
method are very superior to that obtained by DTM. In
addition, the performance of the VIM method is very
simple.

Example 3.5. Consider the second-order integro-
differential equation

Y'(x) +xy'(x) —xy(x) = e — 2sin(x)

+ [ 11 sin(x)e " y(r)dr,
y0)=1, y(0)=1,

with the exact solution

y(x)=e".

Table 2. Error of numerical results for Example 3.4.

X Differential Transformation VIMN =10
Method (DTM) N = 10

0.0 0.00000000e+00 0.00000000e+00
0.1 1.00118319¢-02 2.48072575e-10
0.2 2.78651355e-02 9.92290301e-10
0.3 5.08730892¢-02 2.23265317¢-09
0.4 7.55356316e-02 3.96916120e-09
0.5 9.71888593e-02 6.20181438¢-09
0.6 1.09551714¢-01 8.93061271e-09
0.7 1.04133232¢-01 1.21555561e-08
0.8 6.94512700e-02 1.58766448¢-08
0.9 1.00034260e-02 2.00938786e-08
1.0 1.55147712¢-01 2.48072575e-08

Using the variational iteration method (3) with the ini-
tial approximation yo(x) = x+ 1 which satisfies the ini-
tial conditions, gives

e () =)+ [ (50 {6 +94(6) ~s31(6)
— e+ 2sin(s) — /jl sin(s)e "y (¢)dt | ds.

Then, we have the following primary approximations:

yi(x) = —2x+xe' —3xe ! +2sin(x) +¢*
+1/12x* —elsin(x) + 3¢ !sin(x),

y2(x) =4 —1/4xe' —xe Tcos(1) —xe 'sin(1)
—3/2xe 2cos(1) —3/2xe 2sin(1) — xe' sin(1)
+1/2xe*sin(1) — 1/2xe*cos(1) +6xe > — xsin(1)
—2e! +6e ! +2xcos(1) — 2 sin(x)x — 6~ cos(x)
+2 cos(x)x + sin(1) sin(x) +2e' cos(x) — 6e 2 sin(x)
—2 cos(1)sin(x) +19/12xe ' — 1/6x* — 4 cos(x)
—2sin(x) 4+ e*+5/4¢e'sin(x) —55/12¢ " ! sin(x)
+1/12x%" +cos(1)e " sin(x) + sin(1)e ' sin(x)
+sin(1)e' sin(x) 4 1/2e%cos(1)sin(x)

+3/2e 2 cos(1)sin(x) +3/2e %sin(1)sin(x)
—cos(1)e! sin(x) — 1/2e?sin(1)sin(x) — 3e ™ !sin(x)x
+1/3x° —1/90x° 4 1/504x7 — 1 /4e'x*
+1/2¢ % —1/6e'x® 4 xe! cos(1) + e sin(x)x
—xcos(x)e! +3xcos(x)e .

This example has been solved by the homotopy pertur-
bation method in [13]. In order to show the efficiency
and high accuracy of the presented method, in Figure 1,
we plotted the error functions, i. e.

El\\//im(x) = Yexact — yX/im(x)v
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Fig. 1. The error function with N = 3 in interval [—1, 1], solid
line: variational iteration method; dashed line: homotopy per-
turbation method.

hpm hpm
EN = Yexact — Z y x ’

where N denotes the numbers of iterations.

As we see in Figure 1, the error of this method with
the same iterations is less than that with the homotopy
perturbation method.

Example 3.6. Consider the second-order integro-
differential equation

Y () +05(x) = —(1+x)cos(x) -
+sin(x)) = D+ [ 2eyndr, 5(0) = 1,5/(0) =0,

with the exact solution

1 X
3 (e*(cos(x)

y(x) = cos(x).

According to (3) we have the following iteration for-
mulation:

e () =)+ [ (50 [ +s1(6)
%(es(cos(s) +sin(s)) — 1)
- /s s2ely (t)dt} ds,

0

with the initial approximation yo = 1, which satisfies
the initial conditions, we will have the below approxi-
mations:

yi(x) =—-27/4—-3/2x—e*cos(x)x
—1/4¢*sin(x)x* + 1/4¢*cos(x)x* — 1/6x3
—1/24x* +3 /4" cos(x) + 3 /4e"sin(x) + cos(x)x
+e"x% +6¢* — 2 sin(x) + cos(x) —

+(1+s)cos(s) +

4ex,

401
201
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N\,
] \
—20: \
\
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\
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X

Fig. 2. The error function with only N = 2 in interval [0, 3],
solid line: variational iteration method; dashed line: homo-
topy perturbation method.

y2(x) =57967/5000x — 1 /4e*cos(x)x
+7/4¢"sin(x)x* +9/4¢* cos(x)x>

416572500 sin(x)x* — 2284 /3125 e**sin(x)x
—29/4¢*sin(x)x + 13/500e>* cos(x)x*
—3/8e"cos(x)x® + 1/8e"sin(x)x® + 141/32e**
+9/8x% +589/6000x* — 21 /4¢* cos(x )
+21/4¢*sin(x) + 2 cos(x)x — 245 /4e*x* — 291 /2¢"
—4sin(x) — 9 cos(x) 4 134e™x + 1/180x° 4 1/1008 x
—21/250e** cos(x)x® — 301/2500e>* cos(x)x>
+1812/3125e** cos(x)x +9/500e** sin (x)x*
—53/250e**sin(x)x” + cos(x)x* +35/2¢*x>
—15/4e*x* — 16101 /31250e**cos(x) — 1/24 x5
—6sin(x)x+ 1/2¢e*x> +7257/31250e**sin(x)
178429491 /500000 + 1/8e**x* — 9/8e*"x>
+65/16e**x* — 103/16e**x

As the same of before example, the errors of VIM and

HPM are showed in Figure 2 for the case of N = 2.

4. Conclusions

In this paper, we have studied the nth-order integro-
differential equations with the variational iteration
method. The initial approximation was selected wisely
not in form of the exact solution with unknown con-
stants. The results showed that the variational itera-
tion method is remarkably effective and it is very easy.
In addition, it has more accuracy than the homotopy
method and the differential transformation method.
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