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In this paper, a differential equation describing the optimum path of a flying object is derived. The
density of the fluid is assumed to be exponentially decaying with altitude. The equation is cast in to
a dimensionless form and the exact solution is given. This equation is then analyzed by homotopy
analysis method (HAM). The results showed in the figures reveal that this method is very effective
and convenient.
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1. Introduction

The homotopy analysis method [1, 2] is developed
to search the accurate asymptotic solutions of nonlin-
ear problems. This technique has been successfully ap-
plied to many nonlinear problems such as nonlinear vi-
bration [3], nonlinear water waves [4], viscous flows
of non-Newtonian fluids [5 – 7], nonlinear boundary
flow and heat transfer [8], [9], Von kármán viscous
flow [10], nonlinear fractal Riccati differential equa-
tions [11], Black-Scholes equations [12, 13] and many
other subjects [14 – 21]. Especially, Liao [2] proved
that the homotopy analysis method logically contains
some other non-perturbation techniques, such as Ado-
mian’s decomposition method, Lyapunov’s artificial
small parameter method, and the δ -expansion method.

Drag forces are the major source of energy loss for
objects moving in a fluid medium. Minimization of
work due to drag force may reduce fuel consumption.
Several assumptions can be made for this purpose. One
way to minimize drag work may be to search for an op-
timum path. The drag force depends on the density of
the fluid, the drag coefficient, the cross-sectional area
and the velocity. If all parameters are taken as constant,
then the minimum drag work path would be a linear
path.

However, these parameters change during motion.
A special case in which the density of the fluid is ex-
ponentially decaying with altitude is treated. For this
special case, the remaining parameters are assumed to
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be constant. The equation is cast into a dimensionless
form. Two dimensionless parameters of significant im-
portance appear. One is the decay parameter affecting
changes in density and the other is the height/distance
ratio. The dimensionless differential equation is solved
and an exact analytical solution is obtained. Using ho-
motopy analysis method (HAM), exact solution and
the HAM solution is contrasted. Results agree with
each other.

Several applications of this study are possible. Aero-
planes and helicopters can follow the minimum drag
path to reduce fuel consumption. Ballistic missiles can
also be programmed to follow such an optimum path
for reduction of rocket fuel. Space vehicles especially
when they move in the atmosphere of planets may fol-
low the optimum path for energy reduction. Although
density variations are very small for water compared to
air, the optimum path idea can be applied to routes of
submarines also.

2. Differential Equation of the Path

In this section, the differential equation describing
the minimum drag work path is derived. The drag force
FD for an object moving in a fluid medium is [22]

FD =
1
2

ρACDU2, (1)

where ρ is the density of the fluid medium, A is the
cross-sectional area normal to the direction of move-
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ment, CD is the drag coefficient and U is the velocity
of the moving object. In the special case treated, the
density is assumed to be a function of altitude y∗, i. e.
ρ = ρ(y∗). The work due to drag force along an incre-
mental path ds∗ is

dWD =
1
2

ρ(y∗)ACDU2ds∗, (2)

where ds∗ =
√

dx∗2 + dy∗2 =
√

1 + y′∗2dx∗ for carte-
sian coordinates. For a path starting from origin and
ending at an altitude of h and distance R, the total work
is

WD =
1
2

∫ R

0
ρ(y∗)ACDU2

√
1 + y′∗2dx∗. (3)

If the temperature variations are assumed to be negli-
gible, the density of air exponentially decays with alti-
tude [23]

ρ = ρ0e−αy∗ , (4)

where α = g/RT (g gravity acceleration, R gas con-
stant and T temperature, all assumed to be constants).
The Euler-Lagrange equation is employed for mini-
mizing the above functional [24]

∂F
∂y∗

− d
dx∗

(
∂F
∂y′∗

)
= 0, (5)

where F = ρ0e−αy∗ACDU2
√

1 + y′∗2. Substituting
equivalent of F into (5) yields finally

y′′∗ + α
(

1 + y′∗
2
)

= 0. (6)

The boundary conditions for the problem are

y∗(0) = 0, y∗(R) = h. (7)

For universality of results, the equations may be cast
into a dimensionless form. The dimensionless distance
and altitude is

x =
x∗

R
, u =

y∗

h
. (8)

Equations (6) and (7) can now be expressed in terms of
dimensionless quantities as follows

u′′+ ε
(
1 + β 2u′2

)
= 0,u(0) = 0, u(1) = 1, (9)

where

ε =
αR2

h
, β =

h
R

, (10)

and the prime denotes differentiation with respect to x.

3. Series Solution by Homotopy Analysis Method

We now consider the nonlinear differential equation
with the boundary conditions (9) derived in section 2
and apply the homotopy analysis method [2] to get
series solution of the problem. The equations are re-
peated below:

u′′+ε(1+β 2u′2) = 0,u(0) = 0, u(1) = 1. (11)

According to HAM, we assume that the solution of
system (11), u(x), can be expressed by the following
set of base functions:

{xm|m = 1,2,3, . . .}, (12)

in the form

u(x) =
+∞

∑
n=1

anxn. (13)

According to (11), we choose the linear operator

L[φ(x; p)] =
∂2φ(x; p)

∂x2 , (14)

with the property

L[c1 + c2x] = 0, (15)

where c1 and c1 are constants. Also, we define the non-
linear operator

N [φ(x; p)] =
∂2φ(x; p)

∂x2 +ε
[

1+β 2
(∂φ(x; p)

∂x

)2
]
. (16)

It is straightforward that the initial approximation
should be in the form u0(x) = x that satisfies the bound-
ary conditions. Also, the general zero-order deforma-
tion equation is as follows:

(1− p)L[φ(x; p)−u0(x)] = ph̄H(x)N [φ(x; p)], (17)

with the boundary conditions

φ(0; p) = 0, φ(1, p) = 1, (18)

and the high-order deformation equation is

L[um(x)−χmum−1(x)] = h̄H(x)Rm(�um−1), (19)

with the boundary conditions

um(0) = 0, um(1) = 0, (20)



S. Abbasbandy et al. · Flying Object with Exponentially Decaying Density Medium 433

where

Rm(�um−1) =
1

(m−1)!
∂m−1N [φ(x; p)]

∂pm−1

∣∣∣
p=0

, (21)

and

χm =
{

0, m ≤ 1,
1, m > 1.

(22)

From (16) and (21), we have

Rm(�um−1) = u′′m−1(x)+ ε(1− χm)

+ εβ 2
m−1

∑
j=0

u′ju
′
m−1− j,

(23)

where the prime denotes differentiation with respect
to x. Now, the solution of the mth-order deformation
(19) with considering (23) for m ≥ 1 becomes

um(x) = χmum−1(x)+ h̄
∫ x

0

∫ s

0
H(τ)Rm(�um−1)(τ)dτds

+ c1 + c2x, (24)

where the integral constants c1 and c2 are determined
by the boundary conditions (20). According to the rule
of solution expression denoted by (13) and from (19),
the auxiliary function H(τ) should be in the form
H(τ) = τk, where k is an integer. It is found that,
when k ≤ −1, the solution of the high-order deforma-
tion (19) or (24) contains the terms ln(x) or 1

xs (s ≥ 1),
which incidentally disobeys the rule of solution expres-
sion (13). When k ≥ 1, the base x2 always disappears
in the solution expression of the high-order deforma-
tion (19) or (24), so that the coefficient of the term
x2 cannot be modified even if the order of approxima-
tion tends to infinity. Thus, we had to set k = 0, which
uniquely determines the corresponding auxiliary func-
tion H(τ) = 1. Therefore from (24), we can obtain
u(x) ≈UM(x) = u0(x)+∑M

m=1 um(x) by computing the
ui(x)’s and choosing best value of h̄. As proved by Liao
[2] this must be the approximate solution of the origi-
nal nonlinear equation.

4. Results and Discussion

In this section we obtain some primary approxima-
tions from (24) and then choose proper h̄ with the help
of h̄-curves and finally we present results graphically
by considering different values for ε and β .

Using (24) primary approximations are as follow:

u0(x) = x,

u1(x) =
1
2

h̄ε (1 + β 2)x2 +
(
−1

2
h̄ε − 1

2
h̄ε β 2

)
x,

u2(x) =
1
3

ε2β 2h̄2x3(1 + β 2)+
1
2
(h̄ε + h̄ε β 2 + h̄2ε

+ h̄2ε β 2 − ε2β 2h̄2 − ε2β 4h̄2)x2

+
(

1
6

ε2β 2h̄2 +
1
6

ε2β 4h̄2 − 1
2

h̄ε − 1
2

h̄ε β 2

− 1
2

h̄2ε − 1
2

h̄2ε β 2
)

x,

... (25)

The mth-order approximation of u(x) can be generally
expressed by

UM(x) =
M

∑
m=0

um(x) =
M

∑
n=0

µM,n(h̄)xn+1, (26)

where µm,n(h̄) is a coefficient dependent on h̄. Consid-
ering problem (11) reveals that the values of ε and β
determine the nonlinearity of the equation. So, we con-
tinue the discussion in two parts as follows.

4.1. Weak Nonlinearity: Small Values of ε and β

The exact solution subject to the given boundary
condition can be found by reduction of order. The fi-
nal result is

uexact(x) =
1

εβ 2

· ln
[

cos(εβ x)+
eεβ 2 − cos(εβ )

sin(εβ )
sin(εβ x)

]
.

(27)

The solution is expressed in terms of dimensionless pa-
rameters namely ε (parameter related to the decay of
density) and β (final height over final distance). De-
pending on the numerical values of dimensional pa-
rameters, R and h, the dimensionless parameters may
be small or large. Considering the exact solution shows
that when εβ ≥ π the argument of the function ln[ ] is
negative for some x ∈ [0,1] therefore, in this case, it is
not expected there exist a solution for problem (11).

Equation (26) is a solution of problem (11) with re-
spect to x and auxiliary parameter h̄. In order to deter-
mine h̄ for the convergence of (26), we plotted the so-
called h̄-curves of u′(0) and u′′(0) for different small
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Fig. 1. (a) The h̄-curves with β = 0.1 for ε = 0.1,1,5,10, 10th-order approximation of u′(0). (b) The h̄-curves with β = 0.1
for ε = 0.1,1,5,10, 10th-order approximation of u′′(0).

Fig. 2. (a) The h̄-curves with β = 0.1 for ε = 0.1, 10th-order approximation of u′(0) and u′′(0). (b) The h̄-curves with β = 0.1
for ε = 1, 10th-order approximation of u′(0) and u′′(0). (c) The h̄-curves with β = 0.1 for ε = 5, 10th-order approximation
of u′(0) and u′′(0). (d) The h̄-curves with β = 0.1 for ε = 10, 10th-order approximation of u′(0) and u′′(0). Bold line: u′(0),
dashed line: u′′(0).
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Fig. 3. (a) The 10th-order approximate solution for ε = 0.1,1,5,10,15 when β = 0.1. (b) The 10th-order approximate
solution for β = 0.05,0.1,0.15,0.2 from down to up, respectively, when ε = 10.

Fig. 4. (a) The error of 10th-order approximate solution corresponding to ε for β = 0.1 in x = 0.5. (b) The error of 10th-order
approximate solution corresponding to β for ε = 1 in x = 0.5.

Fig. 5. The error function by norm 2 with respect to h̄ and ε .

values of ε and β as shown in Figures 1 and 2. From
these figures, it is easy to discover the valid region of h̄.
Therefore HAM can provide us with a convenient way
to adjust and control the convergence region and rate
of approximation series.

In Figure 1, h̄-curves are shown with β = 0.1 and
ε = 0.1,1,5,10 for u′(0) and u′′(0), respectively. Also,
h̄-curves of u′(0) and u′′(0) are compared for ε =
0.1,1,5,10 and β = 0.1 separately in Figure 2. As
we can see, the valid region is in the vicinity of −1
therefore we can choose the well value for h̄ from
Figures 1 and 2 as −1. For this value of h̄, the 10th-
order approximate solution has been plotted in Fig-
ure 3, when ε = 0.1,1,5,10,15 for β = 0.1 and when
β = 0.05,0.1,0.15,0.2 for ε = 10.
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Fig. 6. (a) The h̄-curves with β = 1 and ε = 0.1 with 40th-order approximation. (b) The error of 40th-order approximate
solution; bold line: h̄ = −0.4; dashed line: h̄ = −0.8; dotted line: h̄ = −1.

Fig. 7. (a) The h̄-curves with β = 5 and ε = 0.1 with 50th-order approximation. (b) The error of 50th-order approximate
solution; bold line: h̄ = −0.25; dashed line: h̄ = −0.30; dotted line: h̄ = −0.35.

Fig. 8. (a) The h̄-curve with β = 0.1 and ε = 15 with 50th-order approximation. (b) The error of 50th-order approximate
solution; bold line: h̄ = −0.35; dashed line: h̄ = −0.40; dotted line: h̄ = −0.50.
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Fig. 9. (a) (a) The h̄-curve with β = 0.1 and ε = 20 with 50th-order approximation. (b) The error of 50th-order approximate
solution; bold line: h̄ = −0.32; dashed line: h̄ = −0.40; dotted line: h̄ = −0.50.

Now, we want to compare the solution obtained by
HAM with the exact solution. For this, in Figure 4(a),
error function i. e. uHAM−uexact in x = 0.5 correspond-
ing to ε for interval [0,20] is plotted for β = 0.1 and
also, error function in x = 0.5 corresponding to β for
interval [0,2] is showed for ε = 1.

Also, to identify better values of h̄, we plotted in
Figure 5 the error of the approximate solution of 10th-
order by norm 2, i. e.

[
1
10

10

∑
i=1

(uHAM(xi)−uexact(xi))2

] 1
2

, (28)

where xi = 0.1i, i = 1,2, . . . ,10 with respect to both of
h̄ and ε in [−3,0]× [0,10] for β = 0.1.

As we see in Figure 4, the error decreases with de-
crease of both ε and β at a fixed value of x = 0.5. Also,
in Figure 5, the error decreases in vicinity of h̄ = −1
and especially when ε decreases.

4.2. Strong Nonlinearity: Large Values of ε and β

As mentioned earlier, homotopy analysis method
can provide us with a convenient way to adjust and
control the convergence region and the rate of approxi-
mation series. In this part, we show this is exactly right
in spite of choosing values larger than in the previous
part for ε and β .

We plotted h̄-curves of u′(0) and u′′(0) with 40th
approximation for ε = 0.1 and β = 1 in Figure 6(a). It
shows that the valid region for h̄ is [−1.4,−0.1] also.

The error functions for different h̄ are shown in Fig-
ure 6(b). As we see, it is clear that we can control the
convergence of HAM series solution by convergence
control parameter h̄. Figures 6(a) and (b) are repeated
in Figures 7(a) and (b) for ε = 0.1 and β = 5, obvi-
ously, in this case convergence of series solution can
be controlled by choosing proper h̄, too. Now, let us
raise ε which leads to high nonlinearity of the prob-
lem (16). Consider β = 0.1 and ε = 15, the h̄-curve
of u′(0) with 50th approximation is shown in Figure
8(a). It shows that the valid region of h̄ is [−0.6,−0.2]
also. The error functions for different h̄ are shown in
Figure 8(b). As the same of previous cases, it is ob-
vious that we can control convergence of HAM series
solution by the convergence control parameter h̄. Fig-
ures 8(a) and (b) have been repeated in Figures 9(a)
and (b) for β = 0.1 and ε = 20. Furthermore, for a real
comparison between the exact solution and the series
approximate solution, we included Table 1 in case of
strong nonlinearity of the problem which says up to
how many decimal places the solution is comparable
with the exact solution.

5. Conclusions

In this paper, the differential equation describing the
optimum path of a flying object is derived. The den-
sity of the fluid is assumed to be exponentially de-
caying with altitude. The homotopy analysis method
(HAM) [2] is applied to obtain the solution of this
problem. HAM provides us with a convenient way to
control the convergence of approximation series. Ap-
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x ε = 0.1 and β = 5 ε = 20 and β = 0.1
Exact Solution(8D) U50(x) with h̄ = −0.25 Exact Solution(7D) U50(x) with h̄ = −0.32

0.00 0.00000000 0.00000000 0.0000000 0.0000000
0.10 0.31122781 0.31121078 1.4553165 1.4545321
0.15 0.40667739 0.40667762 1.9856103 1.9848079
0.20 0.48347523 0.48348143 2.4194178 2.4186139
0.25 0.54766363 0.54766720 2.7722346 2.7714313
0.30 0.60274408 0.60274495 3.0547962 3.0539934
0.35 0.65092820 0.65092804 3.2746581 3.2738556
0.40 0.69370250 0.69370220 3.4371293 3.4363270
0.45 0.73211433 0.73211413 3.5458404 3.5450383
0.50 0.76692944 0.76692933 3.6030908 3.6022889
0.55 0.79872464 0.79872458 3.6100515 3.6092498
0.60 0.82794524 0.82794520 3.5668631 3.5660616
0.65 0.85494217 0.85494215 3.4726471 3.4718462
0.70 0.87999692 0.87999690 3.3254334 3.3246342
0.75 0.90333864 0.90333863 3.1219894 3.1211951
0.80 0.92515640 0.92515640 2.8575186 2.8567369
0.85 0.94560797 0.94560798 2.5251648 2.5244154
0.90 0.96482635 0.96482643 2.1152010 2.1145359
0.95 0.98292468 0.98292492 1.6136699 1.6132382
1.00 1.00000000 1.00000000 1.0000000 1.0000000

Table 1. Numerical results in
case of strong nonlinearity of the
problem.

proximate HAM solutions are compared with the exact
solution. This work shows us the validity and great po-
tential of HAM for nonlinear problems in science and
engineering.
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