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In this work, the homotopy perturbation method proposed by Ji-Huan He [1] is applied to solve
both linear and nonlinear boundary value problems for fourth-order partial differential equations. The
numerical results obtained with minimum amount of computation are compared with the exact solu-
tion to show the efficiency of the method. The results show that the homotopy perturbation method is
of high accuracy and efficient for solving the fourth-order parabolic partial differential equation with
variable coefficients. The results show also that the introduced method is a powerful tool for solving
the fourth-order parabolic partial differential equations.
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1. Introduction

We consider a fourth-order parabolic partial dif-
ferential equation, with variable coefficients [2, 11,
13, 14]

∂2u
∂t2 + µ(x,y,z)

∂4u
∂x4 + λ (x,y,z)

∂4u
∂y4 + η(x,y,z)

∂4u
∂z4

= g(x,y,z, t), a < x,y, z < b,t > 0, (1)

where µ(x,y,z),λ (x,y,z),η(x,y,z) are variable, sub-
ject to the initial conditions [2, 13]

u(x,y,z,0) = f0(x,y,z),
∂u
∂t

(x,y,z,0) = f1(x,y,z), (2)

and the boundary conditions

u(a,y,z, t) = g0(y,z,t), u(b,y,z,t) = g1(y,z,t), (3)

u(x,a,z, t) = k0(x,z,t), u(x,b,z,t) = k1(x,z,t), (4)

u(x,y,a, t) = h0(x,y,t), u(x,y,b,t) = h1(x,y,t), (5)

∂2u
∂x2 (a,y,z,t) = g0(y,z,t),

∂2u
∂x2 (b,y,z,t) = g1(y,z,t),

(6)

∂2u
∂y2 (x,a,z,t) = k0(x,z,t),

∂2u
∂y2 (x,b,z,t) = k1(x,z,t),

(7)
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∂2u
∂z2 (x,y,a, t) = h0(x,y, t),

∂2u
∂z2 (x,y,b, t) = h1(x,y, t),

(8)

where the functions fi, gi, ki, hi, gi, ki, hi, i = 0,1 are
continuous. The main focus of researchers was to ob-
tain numerical solutions by using several techniques
such as explicit and implicit finite difference schemes
used in particular in [3, 4]. In [3] Andrade and Mc-
Kee studied alternating direction implicit (ADI) meth-
ods for fourth-order parabolic equations with vari-
able coefficients. In [5] Byun and Wang investigated
fourth-order parabolic equations with weak bounded
mean oscillation (BMO) coefficients in Reifenberg do-
mains. Also in [6] Caglar and Caglar investigated fifth-
degree B-spline solution for fourth-order parabolic par-
tial differential equations. Conte [4] investigated a sta-
ble implicit difference approximation to a fourth-order
parabolic equation. Also in [7] Danaee and Evans in-
vestigated the fourth-order parabolic equation by us-
ing the Hopscotch method. Evans [8] expressed (1) in
two space variables as a system of two second-order
parabolic equations where finite difference methods
were employed. Moreover, in [9] Evans and Yousef
investigated the fourth-order parabolic equation with
constant coefficients by using the alternating group
explicit (AGE) method. Gorman [10] studied fourth-
order parabolic partial differential equations in one
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space variable arises in the transverse vibrations of a
uniform flexible beam. Fourth-order parabolic equa-
tions of variable coefficients were also studied by
Khaliq and Twizell [2] where method of lines (MOL)
approach was used to obtain a numerical approx-
imation. In [11] Biazar and Ghazvini investigated
the fourth-order parabolic equation with variable co-
efficients by using the variational iteration method
(VIM). Also fourth-order parabolic partial differen-
tial equations of constant coefficients were studied by
Wazwaz [12] where Adomian’s decomposition method
(ADM) was used and the noise terms phenomenon
were investigated. Wazwaz [13] investigated fourth-
order parabolic partial differential equations in higher-
dimensional spaces with variable coefficients where
Adomian’s decomposition method was used to solve
them. See also [14] for another research work of this
author on fourth-order parabolic partial differential
equations. The approach in this paper is different, as
we employ a semi-analytic technique which is based
on the homotopy perturbation method.

The homotopy perturbation method [1, 15 – 20] is
developed to search the accurate asymptotic solutions
of nonlinear problems. Also, homotopy perturbation
method (HPM) will be effectively used to solve (1).
It is well known in the literature that the homotopy
perturbation method provides the solution in a rapidly
convergent series. This series may provide the solu-
tion in a closed form. This technique has been suc-
cessfully applied to many problems such as func-
tional integral equations [21], Laplace transform [22],
quadratic Riccati differential equation [23], hyperbolic
partial differential equations [24], integro-differential
equations arising in oscillating magnetics fields [25]
and parabolic partial differential equations subject to
temperature overspecification [26], the second kind of
nonlinear integral equations [27], nonlinear equations
arising in heat transfer [28], solutions of generalized
Hirota-Satsuma coupled KdV equation [29], numeri-
cal solutions of the nonlinear Volterra-Fredholm inte-
gral equations [30], exact solutions for nonlinear inte-
gral equations [31], Fredholm integral equations [32],
numeric-analytic solution of system of ODEs [33],
nonlinear biochemical reaction model [15], non-linear
Fredholm integral equations [34], periodic solutions
of nonlinear Jerk equations [35], non-linear system of
second-order boundary value problems [36], inverse
problem of diffusion equation [37], delay differential
equations [38], heat transfer flow of a third grade fluid
between parallel plates [39]. Song and Zhang [40]

studied application of the extended HPM to a kind
of nonlinear evolution equation. Also Yildirim [41]
investigated solutions of boundary value problems
(BVP) for fourth-order integro-differential equations
by HPM. The authors of [42] applied the homotopy
perturbation method to solve the Boussinesq partial
differential equation arising in modeling of flow in
porous media. The homotopy perturbation method is
used in [44] to solve the differential algebraic equa-
tions. HPM is investigated by authors of [45] to solve
the second Painleve equation.

This paper is organized as follows: In Section 2, we
describe the homotopy perturbation method briefly and
apply this technique to fourth-order parabolic partial
differential equations. Section 3 contains several test
problems to show the efficiency of the new method.
Also a conclusion is given in Section 4. Finally some
references are given at the end of this report.

2. Homotopy Perturbation Method

The homotopy perturbation method is a powerful
tool for solving various nonlinear equations, especially
nonlinear partial differential equations. Recently this
method has attracted a wide class of audience in all
fields of science and engineering. This method was
proposed by the Chinese mathematician J. H. He [1].
In this work, He’s homotopy perturbation method is
adopted to study the fourth-order parabolic partial dif-
ferential equations. To illustrate the basic idea of the
homotopy perturbation method, consider the following
nonlinear equation

A(v) = f (r), r ∈ Ω , (9)

subject to the boundary condition

B
(

u,
∂u
∂n

)
= 0, r ∈ Γ , (10)

where A is a general differential operator, B is a bound-
ary operator, f (r) is a known analytic function, Γ is the

boundary of the domain Ω and ∂
∂n

denotes differenti-
ation along the normal vector drawn outwards Ω . The
operator A can generally be divided into two parts L,
N. Therefore (9) can be rewritten as follows:

A(v) = L(v)+ N(v), r ∈ Ω . (11)

He [16] constructed a homotopy v(r, p) : Ω × [0,1]→R



422 M. Dehghan and J. Manafian · Variable Coefficients Fourth-Order Parabolic Partial Differential Equations

which satisfies

H(v, p) = (1− p)[L(v)−L(u0)]+ p[A(v)− f (r)]
= 0,

(12)

and is equivalent to

H(v, p) = L(v)−L(u0)+ pL(u0)+ p[N(v)− f (r)]
= 0, (13)

where p ∈ [0,1] is an embedding operator, and u0 is an
initial approximation of (9). Obviously, we have

H(v,0) = L(v)−L(u0), H(v,1)= A(v)− f (r). (14)

The change process of p from zero to unity is just that
of H(v, p) from L(v)−L(u0) to A(v)− f (r). In topol-
ogy, this is called deformation and L(v)− L(u0) and
A(v)− f (r) are called homotopic. According to the ho-
motopy perturbation method, the parameter p is used
as a small parameter, and the solution of (13), can be
expressed as in p in the form

v = v0 + v1 p + v2p2 + . . . . (15)

When p → 1, (13) corresponds to the original one, (9).
Thus (15) becomes the approximate solution of (9),
i. e.

u = lim
p→1

v =
∞

∑
k=0

vk. (16)

For solving (1) by the homotopy perturbation method,
we have

L :=
∂2

∂t2 ,

N := µ(x,y,z)
∂4

∂x4 + λ (x,y,z)
∂4

∂y4 + η(x,y,z)
∂4

∂z4 ,

(17)

where g(x,y,z, t) is a known function. Beginning with
u0(x,y,z, t) = f0(x,y,z) + f1(x,y,z)t, the approximate
solution of (1) can be determined.

3. Test Problems

To illustrate the solution procedure and show the
ability of the method some examples are provided.

Example 1. Consider the following one dimen-
sional variable coefficients fourth-order parabolic par-
tial differential equation [2, 3, 10, 11, 14]

∂2u
∂t2 (x, t)+

(
1
x

+
x4

120

)
∂4u
∂x4 (x,t) = 0,

1
2

< x < 1, t > 0,

(18)

subject to the initial conditions

u(x,0) = 0,
∂u
∂t

(x,0) = 1 +
x5

120
, (19)

and the boundary conditions

u
(

1
2
, t
)

=
(

1 +(0.5)5

120

)
sin(t),

u(1, t) =
121
120

sin(t),
(20)

∂2u
∂x2

(
1
2
, t
)

=
1
6

(
1
2

)3

sin(t),
∂2u
∂x2 (1, t)=

1
6

sin(t).

Now by (13), we have:

∂2v
∂t2 (x, t)− ∂2u0

∂t2 (x, t)+ p
∂2u0

∂t2 (x,t)

+ p
(

1
x

+
x4

120

)
∂4v
∂x4 (x, t) = 0.

(21)

From the initial conditions we have

u(x,0) = u0(x,0)+ u1(x,0)+ u2(x,0)+ . . .

+ uk(x,0)+ . . . = 0.
(22)

Using u0(x, t) = u(x,0)+ tut(x,0), then we get

u0(x, t) =
(

1 +
x5

120

)
t, u0(x,0) = 0, (23)

and so, we have

u1(x, t) = u2(x, t) = . . . |t=0 = 0,

∂u
∂t

(x, t)
∣∣∣∣
t=0

= 1 +
x5

120
=

∂u0

∂t
(x,0)+

∂u1

∂t
(x,0)+ . . .+

∂uk

∂t
(x,0)+ . . . .

(24)

Thus we can write

∂u0

∂t
(x,0) = 1 +

x5

120
,

∂u1

∂t
(x,0) =

∂u2

∂t
(x,0) = . . . =

∂uk

∂t
(x,0) = . . . = 0.

(25)

Substituting (15) into (21), and equating coefficients of
like powers of p, we obtain.

p0 :
∂2v0

∂t2 (x, t)− ∂2u0

∂t2 (x, t) = 0,
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p1 :
∂2v1

∂t2 (x, t)+
∂2u0

∂t2 (x,t)

+
(

1
x

+
x4

120

)
∂4v0

∂x4 (x,t) = 0,

p2 :
∂2v2

∂t2 (x, t)+
(

1
x

+
x4

120

)
∂4v1

∂x4 (x,t) = 0,

...

pk+1 :
∂2vk+1

∂t2 (x,t)+
(

1
x

+
x4

120

)
∂4vk

∂x4 (x,t) = 0. (26)

Therefore, we obtain

v0(x, t) = u0(x,t) =
(

1 +
x5

120

)
t,

∂4v0

∂x4 (x, t) = xt,

∂2v1

∂t2 (x, t)+ 0 +
(

1 +
x5

120

)
t = 0,

(27)

then we have
∂v1

∂t
(x, t) = −

(
1 +

x5

120

)
t2

2!
+ g(x),

∂u1

∂t
(x, t)

∣∣∣∣
t=0

=
∂v1

∂t
(x,t)

∣∣∣∣
t=0

= g(x).
(28)

By using (25), (28), we obtain g(x) = 0

∂v1

∂t
(x, t) = −

(
1 +

x5

120

)
t2

2!
, (29)

where (29) gives

v1(x, t) = −
(

1 +
x5

120

)
t3

3!
, (30)

with repeating this procedure we obtain

v2(x, t) =
(

1 +
x5

120

)
t5

5!
,

...
vn(x, t) = (−1)n

(
1 +

x5

120

)
t2n+1

(2n + 1)!
.

(31)

Thus we can write

u(x, t) = lim
p→1

∞

∑
k=0

pkvk(x,t) =
(

1 +
x5

120

)(
t − t3

3!

+
t5

5!
− . . .+(−1)n t2n+1

(2n + 1)!
+ . . .

)

=
(

1 +
x5

120

)
sin(t),

(32)

which is the exact solution of the test example 1.

Example 2. Consider the following parabolic equa-
tion [10, 11, 14]

∂2u
∂t2 (x, t)+

(
x

sin(x)
−1
)

∂4u
∂x4 (x, t) = 0,

0 < x < 1, t > 0,

(33)

with initial conditions

u(x,0)= (x−sin(x)),
∂u
∂t

(x,0) =−(x−sin(x)), (34)

and the boundary conditions

u(0, t) = 0, u(1, t) = exp(−t)(1− sin(1)),

∂2u
∂x2 (0, t) = 0,

∂2u
∂x2 (1, t) = exp(−t)sin(1).

(35)

From the initial conditions we have

u(x, t)=
∞

∑
k=0

uk(x, t)=u0(x, t)+ u1(x, t)+ u2(x, t)+ . . .

x− sin(x) = u(x,0) =
u0(x,0)+ u1(x,0)+ u2(x,0)+ . . . .

(36)

Using u0(x, t) = u(x,0)+ tut(x,0), we obtain

u0(x, t) = (x− sin(x))(1− t),
u1(x,0) = u2(x,0) = . . . = 0,

∂u
∂t

(x,0) =
∂u0

∂t
(x,0)+

∂u1

∂t
(x,0)+

∂u2

∂t
(x,0)+ . . .

−x + sin(x) =
∂u
∂t

(x,0) =
∂u0

∂t
(x,0)+

∂u1

∂t
(x,0)

+
∂u2

∂t
(x,0)+ . . . . (37)

Thus we obtain

∂u0

∂t
(x,0) = −(x− sin(x)),

∂u1

∂t
(x,0) =

∂u2

∂t
(x,0) = . . . = 0.

(38)

Commencing with u0(x, t) = (x − sin(x))(1 − t), and
with equating coefficients of like powers of p, we ob-
tain

p0 :
∂2v0

∂t2 (x, t)− ∂2u0

∂t2 (x, t) = 0,

p1 :
∂2v1

∂t2 (x, t)+
∂2u0

∂t2 (x, t)

+
(

x
sin(x)

−1
)

∂4v0

∂x4 (x, t) = 0,
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p2 :
∂2v2

∂t2 (x, t)+
(

x
sin(x)

−1
)

∂4v1

∂x4 (x,t) = 0,

...

pk+1 :
∂2vk+1

∂t2 (x,t)+
(

x
sin(x)

−1
)

∂4vk

∂x4 (x,t)=0. (39)

This gives

v0(x, t) = u0(x,t) = (x− sin(x))(1− t),

v1(x, t) = (x− sin(x))
(

t2

2!
− t3

3!

)
,

v2(x, t) = (x− sin(x))
(

t4

4!
− t5

5!

)
,

...

(40)

Using (40) yields

u(x, t) = lim
p→1

∞

∑
k=0

pkvk(x,t) =
∞

∑
k=0

vk(x,t),

u(x, t) = (x− sin(x))
(

1− t+
t2

2!
− t3

3!
+

t4

4!
− t5

5!
+. . .

)
= exp(−t)(x− sin(x)), (41)

which is the exact solution of the test example 2.

Example 3. Now we solve the following one di-
mensional non-homogeneous fourth-order parabolic
equation [10, 11, 14]

∂2u
∂t2 (x, t)+ (1 + x)

∂4u
∂x4 (x,t) =(

x3 + x4 −
(

6
7!

)
x7
)

cos(t),

0 < x < 1, t > 0,

(42)

subject to the initial conditions

u(x,0) =
(

6
7!

)
x7,

∂u
∂t

(x,0) = 0, (43)

and the boundary conditions

u(0, t) = 0, u(1,t) =
(

6
7!

)
cos(t),

∂2u
∂x2 (0, t) = 0,

∂2u
∂x2 (1,t) =

1
20

cos(t).

(44)

Starting with u0(x,t) = ( 6
7!)x

7, and equating coeffi-
cients of like powers of p, we obtain

p0 : v0(x,t) =
(

6
7!

)
x7,

p1 : v1(x, t) = (x3 + x4)
(

1− t2

2!
− cos(t)

)

−
(

6
7!

)
x7(1− cos(t)),

p2 : v2(x, t) = 24(1 + x)
(

1− t2

2!
+

t4

4!
− cos(t)

)

− (x3 + x4)
(

1− t2

2!
− cos(t)

)
,

p3 : v3(x, t) = −24(1 + x)
(

1− t2

2!
+

t4

4!
− cos(t)

)
,

(45)

vi(x, t) = 0, ∀ i = 4,5,6, . . . ,

v(x, t) =
∞

∑
k=0

vk(x, t),
(46)

where

u(x, t) =
∞

∑
k=0

uk(x, t) = lim
p→1

∞

∑
k=0

pkvk(x, t)

=
6
7!

x7 cos(t),
(47)

which is the exact solution of the test example 3.
Example 4. Consider the fourth-order parabolic

equation in two space variables [2, 3, 11, 13]

∂2u
∂t2 (x,y, t)+ 2

(
1
x2 +

x4

6!

)
∂4u
∂x4 (x,y, t)

+ 2
(

1
y2 +

y4

6!

)
∂4u
∂y4 (x,y, t) = 0,

1
2

< x,y < 1, t > 0,

(48)

with initial conditions

u(x,y,0) = 0,
∂u
∂t

(x,y,0) = 2 +
x6

6!
+

y6

6!
, (49)

and the boundary conditions [2, 13]

u
(

1
2
,y, t
)

=
(

2 +
(0.5)

6!
+

y6

6!

)
sin(t),

u(1,y, t) =
(

2 +
1
6!

+
y6

6!

)
sin(t),

∂2u
∂x2

(
1
2
,y, t
)

=
(0.5)4

24
sin(t),

∂2u
∂x2 (1,y, t)=

1
24

sin(t),

∂2u
∂y2

(
x,

1
2
, t
)

=
(0.5)4

24
sin(t),

∂2u
∂y2 (x,1,t)=

1
24

sin(t).

(50)
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Commencing with u0(x,y,t) = (2 + x6

6! + y6

6! )t, and
equating coefficients of like powers of p, we obtain

p0 :
∂2v0

∂t2 (x,y,t)− ∂2u0

∂t2 (x,y,t) = 0,

p1 :
∂2v1

∂t2 (x,y,t)+
∂2u0

∂t2 (x,y,t)

+ 2
(

1
x

+
x4

6!

)
∂4v0

∂x4 (x,y,t)

+ 2
(

1
y

+
y4

6!

)
∂4v0

∂y4 (x,y,t) = 0,

p2 :
∂2v2

∂t2 (x,y,t)+ 2
(

1
x

+
x4

6!

)
∂4v1

∂x4 (x,y,t)

+ 2
(

1
y

+
y4

6!

)
∂4v1

∂y4 (x,y,t) = 0,

...

(51)

Thus we obtain

v0(x,y, t) =
(

2 +
x6

6!
+

y6

6!

)
t,

v1(x,y, t) = −
(

2 +
x6

6!
+

y6

6!

)
t3

3!
,

v2(x,y, t) =
(

2 +
x6

6!
+

y6

6!

)
t5

5!
,

...

(52)

It can be seen that

u(x,y, t) = lim
p→1

∞

∑
k=0

pkvk(x,y,t)

=
(

2 +
x6

6!
+

y6

6!

)(
t − t3

3!
+

t5

5!
− t7

7!
+ . . .

)
,

u(x,y, t) =
(

2 +
x6

6!
+

y6

6!

)
sin(t),

(53)

which is the exact solution of the test example 4.

Example 5. Suppose we solve the following partial
differential equation in three space variables [11,13]

∂2u
∂t2 (x,y,z,t)+

(
y + z

2cos(x)
−1
)

∂4u
∂x4 (x,y,z, t)

+
(

x + z
2cos(y)

−1
)

∂4u
∂y4 (x,y,z,t)

+
(

y + x
2cos(z)

−1
)

∂4u
∂z4 (x,y,z, t) = 0,

0 < x,y,z <
π
3

, t > 0, (54)

subject to the initial conditions

u(x,y,z,0) = x+y+z−(cos(x)+cos(y)+cos(z)), (55)

∂u
∂t

(x,y,z,0) = (cos(x)+ cos(y)+ cos(z))

− (x + y + z),
(56)

and the boundary conditions [13]

u(0,y,z, t) = exp(−t)(−1 + y + z− cos(y)− cos(z)),

u(
π
3

,y,z, t) =

exp(−t)
(

2π −3
6

+ y + z− cos(y)− cos(z)
)

,

u(x,0,z, t) =

exp(−t)(−1 + x + z− cos(x)− cos(z)),

u
(

x,
π
3

,z, t
)

=

exp(−t)
(

2π −3
6

+ x + z− cos(x)− cos(z)
)

,

u(x,y,0, t) =

exp(−t)(−1 + x + y− cos(x)− cos(y)),

u
(

x,y,
π
3

, t
)

=

exp(−t)
(

2π −3
6

+ x + y− cos(x)− cos(y)
)

,

∂u
∂x

(0,y,z, t) =
∂u
∂y

(x,0,z, t) =
∂u
∂z

(x,y,0, t) = exp(−t),

∂u
∂x

(π
3

,y,z, t
)

=
∂u
∂y

(
x,

π
3

,z, t
)

=
∂u
∂z

(
x,y,

π
3

, t
)

=

(√
3+ 2
2

)
exp(−t).

(57)

From (13) the homotopy perturbation method will be
obtained as

∂2v
∂t2 (x,y,z, t)− ∂2u0

∂t2 (x,y,z, t)+ p
∂2u0

∂t2 (x,y,z, t)
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+p

[(
y + z

2cos(x)
−1
)

∂4v
∂x4 (x,y,z,t)

+
(

x + z
2cos(y)

−1
)

∂4v
∂y4 (x,y,z,t)

+
(

y + x
2cos(z)

−1
)

∂4v
∂z4 (x,y,z,t)

]
= 0.

(58)

Starting with u0(x,y,z,t) = (x + y + z − cos(x) −
cos(y) − cos(z))(1 − t), by using (15) for (58) and
equating coefficients of like powers of p yield

p0 :
∂2v0

∂t2 (x,y,z,t)− ∂2u0

∂t2 (x,y,z,t) = 0,

p1 :
∂2v1

∂t2 (x,y,z,t)+
∂2u0

∂t2 (x,y,z,t)

+
(

y + z
2cos(x)

−1
)

∂4v0

∂x4 (x,t)

+
(

x + z
2cos(y)

−1
)

∂4v0

∂y4 (x,y,z,t)

+
(

y + x
2cos(z)

−1
)

∂4v0

∂z4 (x,y,z,t) = 0,

...

(59)

Therefore, we have

v0(x,y,z, t) =
(x + y + z− cos(x)− cos(y)− cos(z))(1− t),

v1(x,y,z, t) =

(x + y + z− cos(x)− cos(y)− cos(z))
(

t2

2!
− t3

3!

)
,

v2(x,y,z, t) =

(x + y + z− cos(x)− cos(y)− cos(z))
(

t4

4!
− t5

5!

)
,

... (60)

Thus we can write

u(x,y,z, t) = lim
p→1

∞

∑
k=0

pkvk(x, ,y,z,t) =

(x + y + z− cos(x)− cos(y)− cos(z))
(

1− t +
t2

2!

− t3

3!
+

t4

4!
+ . . .

)
= (x + y + z− cos(x)− cos(y)

−cos(z))
∞

∑
k=0

(−t)n

n!
= (x + y + z− cos(x)− cos(y)

−cos(z))exp(−t), (61)

which is the exact solution of the test example 5.

Example 6. As the last example, we consider the
following three dimensional non-homogeneous fourth-
order parabolic equation [11, 13]

∂2u
∂t2 (x,y,z, t)+

1
4!

[
1
z

∂4u
∂x4 (x,y,z, t)

+
1
x

∂4u
∂y4 (x,y,z, t)+

1
y

∂4u
∂z4 (x,y,z, t)

]
=

−
(

x
y

+
y
z

+
z
x

+
1
x5 +

1
y5 +

1
z5

)
cos(t),

1
2

< x,y,z < 1, t > 0,

(62)

with initial conditions

u(x,y,z,0) =
x
y

+
y
z
+

z
x
,

∂u
∂t

(x,y,z,0) = 0, (63)

and the boundary conditions [13]

u
(

1
2
,y,z, t

)
=
(

1
2y

+
y
z

+ 2z
)

cos(t),

u(1,y,z, t) =
(

1
y

+
y
z

+ z
)

cos(t),

u
(

x,
1
2
,z, t
)

=
(

2x +
1
2z

+
z
x

)
cos(t),

u(x,1,z, t) =
(

x +
1
z

+
z
x

)
cos(t),

u
(

x,y,
1
2
, t
)

=
(

x
y

+ 2y +
1
2x

)
cos(t),

u(x,y,1, t) =
(

x
y

+ y +
1
x

)
cos(t),

∂u
∂x

(
1
2
,y,z, t

)
=
(

1
y
−4z

)
cos(t),

∂u
∂x

(1,y,z, t) =
(

1
y
− z
)

cos(t),

∂u
∂y

(
x,

1
2
,z, t
)

=
(
−4x +

1
z

)
cos(t),

∂u
∂y

(x,1,z, t) =
(
−x +

1
z

)
cos(t),

∂u
∂z

(
x,y,

1
2
, t
)

=
(
−4y +

1
x

)
cos(t),

∂u
∂z

(x,y,1, t) =
(
−y +

1
x

)
cos(t).

(64)

Applying the He’s homotopy perturbation method and
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Fig. 1. The surface of the exact and the approx-
imate solutions of (18). (a) The exact solution.
(b) The approximate solution obtained in this
work.

Fig. 2. The surface of the exact and the approx-
imate solutions of (33). (a) The exact solution.
(b) The approximate solution obtained in this
work.

equating coefficients of like power of p, we obtain

p0 : v0(x,y,z, t) =
x
y

+
y
z

+
z
x
,

p1 : v1(x,y,z, t) =
(

x
y

+
y
z

+
z
x

)
(cos(t)−1)

+
(

1
x5 +

1
y5 +

1
z5

)(
cos(t)− t2

2!
−1
)

,

p2 : v2(x,y,z, t) =
(

1
x5 +

1
y5 +

1
z5

)(
cos(t)+

t2

2!
−1
)

+ 70
(

1
zx9 +

1
xy9 +

1
yz9

)(
t2

2!
+

t4

4!
+ cos(t)−1

)
,

... (65)

Thus we can write

u(x,y,z, t) =
(

x
y

+
y
z

+
z
x

)
cos(t), (66)

which is the exact solution of the test example 6.
We illustrate the accuracy and efficiency of ho-

motopy perturbation method (HPM) by applying the
method to fourth-order parabolic equations and com-
paring the approximate solutions with the exact solu-
tions. For this purpose, we calculate the numerical re-
sults of the exact solutions and the multi-terms approx-
imate solutions of HPM. At the same time, the surface
graphics of the exact and multi-terms approximate so-
lutions are plotted in Figs. 1, 2, 3, 4, 5 and 6. One can
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Fig. 3. The surface of the exact and the ap-
proximate solutions of (42). (a) The exact so-
lution. (b) The approximate solution obtained
in this work.

Fig. 4. The surface of the exact and the ap-
proximate solutions of (48). (a) The exact so-
lution. (b) The approximate solution obtained
in this work.

see that the approximate solutions obtained by HPM
are quite close to their exact solutions.

4. Conclusion

The main idea of this work was to propose a sim-
ple method for solving fourth-order parabolic partial
differential equations. We have achieved an analytical
solution by applying the He’s homotopy perturbation
method (HPM). The main advantage of the method is
the fact that it gives an analytical approximation solu-
tion. The results are compared with those in the litera-
ture, revealing that the obtained solutions are exactly

the same with those obtained by the Adomian’s de-
composition method [12 – 14]. Also solutions obtained
by the homotopy perturbation method are the same
with He’s variation iteration method [11]. In examples
we observed that the HPM with the initial approxima-
tions obtained from (16) yield exact solutions in few
iterations only. In all examples we observed that the
HPM solutions are more efficient than the modified
Adomian’s decomposition method. HPM avoids the
difficulties arising in finding the Adomian’s polyno-
mials [46 – 50]. In addition, the calculations involved
in HPM are very simple and straightforward. It can
be shown that the HPM is a promising tool for solv-
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Fig. 5. The surface of the exact and the approx-
imate solutions of (54). (a) The exact solution.
(b) The approximate solution obtained in this
work.

Fig. 6. The surface of the exact and the approx-
imate solutions of (63). (a) The exact solution.
(b) The approximate solution obtained in this
work.

ing some linear and nonlinear partial differential equa-
tions. It is worth to point out that this technique unlike
the mesh points methods [43] does not provide any lin-
ear or nonlinear system of equations.
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