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With applications in the higher-power and femtosecond optical transmission regime, a generalized
variable-coefficient higher-order nonlinear Schrödinger (VC-HNLS) equation is analytically investi-
gated. The multi-solitonic solutions of the generalized VC-HNLS equation in double Wronskian form
is constructed and further verified using the Wronskian technique. Additionally, an infinite number of
conservation laws for such an equation are presented. Finally, discussions and conclusions on results
are made with figures plotted.
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1. Introduction

Soliton theory [1, 2] in the nonlinear science plays
an important role in various fields of science and engi-
neering such as Bose-Einstein condensates, fluid me-
chanics, plasma physics, and nonlinear optics [3 – 16].
Many nonlinear phenomena can be described by the
nonlinear evolution equations (NLEEs). To better un-
derstand those phenomena, many methods have been
developed to find various analytic solutions, specially
the soliton ones of NLEEs, such as the inverse scatter-
ing transformation [17, 18], bilinear method [19 – 21],
Wronskian technique [22 – 24], and Darboux transfor-
mation [25]. Among these solitons, the optical soli-
tons have currently attracted much interest for their
potential applications in the long-haul optical commu-
nication systems or all-optical ultrafast switching de-
vices and their unique properties of propagation with-
out distortion and spreading [26, 27]. The dynamics
of nonlinear optical pulse propagation in the picosec-
ond regime are described by the nonlinear Schrödinger
(NLS) equation with only the group velocity disper-
sion (GVD) and self-phase modulation (SPM). Many
authors have focused their research on various soli-
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ton solutions of the NLS equation with uniform or
nonuniform parameters theoretically and experimen-
tally [28 – 31] (and references therein). However, when
the optical pulse gets shorter, the NLS-type equations
become inadequate. The governing equation of the
ultra-short pulse propagation in the femtosecond do-
main, i. e. the higher-order NLS (HNLS) equation [32]
was derived considering the effects of the transverse
inhomogeneity and nonlinear dispersion and dissipa-
tion consistently to higher orders such as third-order
dispersion (TOD), self-steepening (SS), and stimulate
Raman scattering (SRS).

Nowadays, the investigation on the HNLS equa-
tion has been a topic of primary importance due to
its significant applications in telecommunication and
ultrafast signal-routing systems [33 – 35]. Consider-
ing real applications in the long-distance communica-
tions and manufacturing problems, there are more and
more attention paid to the variable-coefficient HNLS
(VC-HNLS) equations which can describe the pulse
propagation in inhomogeneous fibers more realisti-
cally than the constant-coefficient ones [26, 27, 36 –
40]. Moreover, it is significant to study the disper-
sion management problem [41] described by the VC-
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HNLS equation in the femtosecond regime. In this pa-
per, a generalized VC-HNLS equation [42 – 44] is in-
vestigated,

uz + α1(z)ut + α2(z)u + iα3(z)utt + α4(z)uttt

+ iα5(z)|u|2u + α6(z)(|u|2u)t + α7(z)(|u|2)t u = 0,
(1)

which describes the femtosecond pulse propagation
applicable to telecommunication and ultrafast signal-
routing systems extensively in the weakly dispersive
and nonlinear dielectrics with distributed parameters.
The function u = u(z,t) is the complex envelope of
the electrical field in the monomode optical fiber with
respect to the propagation distance z and the time t.
The term proportional to α1(z) results from the group
velocity. α2(z) is related to the heat-insulating am-
plification or loss. α3(z) and α4(z) represent the ef-
fects of GVD and TOD, respectively. α5(z) is the SPM
parameter, and the parameters α6(z) and α7(z) de-
note the effects of SS and SRS, respectively. All the
coefficients α j(z) ( j = 1,2, · · · ,7) are real functions
of z.

One representation associated with multi-soliton so-
lutions is Wronskian which was first introduced by Sat-
suma [45]. Furthermore, Freeman and Nimmo devel-
oped the Wronskian technique [46 – 48], a remarkable
feature of which is that the Wronskian solution can be
verified by direct substitution into the bilinear form of
the NLEE [49], since the differentiation of this kind
of determinant leads to the sum of a number of deter-
minants relying not on the size of the determinant, but
merely upon the number of derivatives. In the present
paper, the multi-solitonic solutions of (1) in double
Wronskian form are presented on the basis of the Lax
pair under special coefficient constraints and verified
by virtue of the Wronskian technique. Furthermore, as
one of the integrable properties for the soliton equa-
tions, an infinite number of conservation laws are pre-
sented which assures the completely integrability of (1)
under special coefficient constraints.

The organization of this paper is as follows: In
Section 2, the double Wronskian solution of (1) is
constructed under special coefficient constraints. And
then, making use of the Wronskian technique, the ver-
ification of the double Wronskian solution is given by
direct substitution into the bilinear form. In Section 3,
an infinite number of conservation laws are presented.
Section 4 is devoted to discussions and conclusions on
the results and the graphical illustrations for solitonic
solutions of (1).

2. Double Wronskian Solution

Referred to [44], (1) is completely integrable in the
sense of possessing Lax pair under the coefficient con-
straints,

α2(z) =
α ′

5(z)α3(z)−α ′
3(z)α5(z)

2α5(z)α3(z)
, (2)

3α4(z)α5(z) = α3(z) [3α6(z)+ 2α7(z)] , (3)

α6(z)+ α7(z) = 0. (4)

Actually, constraint (2) can be reduced to

α5(z)
α3(z)

= c0e2
∫

α2(z)dz, (5)

with c0 as an arbitrary nonzero real integration con-
stant. The following Lax pair of (1) have been derived
by the authors:

φt = Uφ ,

U =
(

λ β (z)u(z, t)
γ(z)u∗(z, t) −λ

)
,

(6)

φz = Vφ ,

V =
(

A(z, t,λ ) B(z, t,λ )
C(z, t,λ ) −A(z, t,λ )

)
,

φ =
(

φ1
φ2

)
,

(7)

where u(z, t) is the potential, λ is the spectral parame-
ter and

A = −4α4(z)λ 3 −2iα3(z)λ 2

−
[

α4(z)α5(z)
α3(z)

|u|2 + α1(z)
]

λ − i
α5(z)

2
|u|2

+
α4(z)α5(z)

2α3(z)
(uu∗t −u∗ut)+ a0(z),

B = β (z)
{
−4α4(z)uλ 2 − [2iα3(z)u

+ 2α4(z)ut ]λ − α4(z)α5(z)
α3(z)

|u|2u

− iα3(z)ut −α4(z)utt −α1(z)u
}
,

C = β (z)
{

4α4(z)u∗λ 2 +[2iα3(z)u∗

−2α4(z)u∗t ]λ +
α4(z)α5(z)

α3(z)
|u|2u∗

− iα3(z)u∗t + α4(z)u∗tt + α1(z)u∗
}

,
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where a0(z) is a function of integration and β (z) =

−γ(z) =
√

α5(z)
2α3(z)

. The compatibility condition Uz −
Vt +[U,V]=0 gives rise to (1) under constraints (2 – 4),
which means that (1) is completely integrable.

In the following, the double Wronskian solution will
be presented and verified via the Wronskian technique.
Through the dependent variable transformation

u(z, t) = κ(z)
g(z,t)
f (z,t)

, (8)

where g(z, t) is a complex function and f (z,t) is a real
one, the resulting bilinear form of (1) [50] is obtained
under constraints (3) and (4),[

Dz + α1(z)Dt + iα3(z)D2
t + α4(z)D3

t
]
(g · f ) = 0, (9)

α3(z)D2
t ( f · f ) = α5(z)κ(z)2|g|2, (10)

where κ(z)=c1e−
∫

α2(z)dz with c1 as an arbitrary con-
stant and Dx and Dt are the bilinear derivative operators
[49] defined as

Dm
x Dn

t (a ·b) =(
∂
∂x

− ∂
∂x′

)m( ∂
∂t

− ∂
∂t ′

)n

a(x,t)b(x′,t ′)
∣∣∣∣
x′=x,t′=t

.

Under constraint (2) with c0c2
1 = 2, (10) becomes

D2
t ( f · f ) = 2|g|2. (11)

The double Wronskian determinant is defined as

W N,M(ϕ ,ψ) =

det
(

ϕ ,∂tϕ , · · · ,∂N−1
t ϕ ; ψ ,∂tψ , · · · ,∂M−1

t ψ
)

,

with ϕ = (ϕ1,ϕ2, · · · ,ϕN+M)T and ψ = (ψ1,ψ2, · · · ,
ψN+M)T where T denotes the vector transpose. For
convenience, the double Wronskian determinant is de-
noted in the abbreviated notation

W N,M(ϕ ,ψ) = (N̂ −1; M̂−1).

By virtue of the Lax pair of (1), we suppose

g = 2W N+1,N−1(ϕ ,ψ) = 2(N̂; N̂ −2),

g∗ = 2W N−1,N+1(ϕ ,ψ) = 2(N̂ −2; N̂),

f = W N,N(ϕ ,ψ) = (N̂ −1; N̂ −1),

(12)

where

ϕ j = eε j , ψ j = e−ε j , ϕ j+N = −ψ∗
j = −e−ε∗j ,

ψ j+N = ϕ∗
j = eε∗j , ( j = 1,2, · · · ,N)

with

ε j = k jt − k j

∫
α1(z)dz−2ik j

2
∫

α3(z)dz

−4k j
3
∫

α4(z)dz+ ε j0,

where k j and ε j0( j = 1,2, · · · ,N) are complex con-
stants.

Employing the Wronskian technique, it can be
proved that f and g defined in the double Wronskian
form indeed satisfy (9) and (11). Firstly, the derivatives
of f with respect to t and z are given as below,

ft = (N̂ −2,N; N̂ −1)+ (N̂ −1; N̂ −2,N),

ftt = (N̂ −3,N −1,N; N̂ −1)+ (N̂ −2,N + 1; N̂ −1)

+ 2(N̂ −2,N; N̂ −2,N)+ (N̂ −1; N̂ −3,N −1,N)

+ (N̂ −1; N̂ −2,N + 1),

fttt = (N̂ −4,N −2,N −1,N; N̂ −1)+ 2(N̂−3,

N −1,N + 1; N̂ −1)+ 3(N̂ −3,N −1,N; N̂ −2,N)

+3(N̂ −2,N + 1; N̂ −2,N)+ (N̂ −2,N + 2; N̂ −1)

+(N̂ −1; N̂ −4,N −2,N −1,N)+ 2(N̂−1; N̂ −3,

N −1,N + 1)+ 3(N̂−2,N; N̂ −3,N −1,N)

+3(N̂ −2,N; N̂ −2,N + 1)+ (N̂−1; N̂ −2,N + 2),

fz = −α1(z)
[
(N̂ −2,N; N̂ −1)+ (N̂ −1; N̂ −2,N)

]
+2iα3(z)

[
(N̂ −3,N −1,N; N̂ −1)− (N̂−2,N + 1;

N̂ −1)− (N̂ −1; N̂ −3,N −1,N)+ (N̂−1; N̂ −2,

N + 1)
]
−4α4(z)

[
(N̂ −4,N −2,N −1,N; N̂ −1)

−(N̂ −3,N −1,N + 1; N̂ −1)+ (N̂ −2,N + 2; N̂ −1)

+(N̂ −1; N̂ −4,N −2,N−1,N)− (N̂−1;

N̂ −3,N −1,N + 1)+ (N̂−1; N̂ −2,N + 2)
]
.

The corresponding derivatives and identities related to
g can be obtained similarly.

Substituting various derivatives of f and g into (9)
and (11), and utilizing the determinant identities in the
Appendix yield,
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Dz + α1(z)Dt + iα3(z)D2

t + α4(z)D3
t
]
(g · f ) =

4iα3(z)

[∣∣∣∣∣ N̂ −2 0 N̂−2 0 N −1 N N + 1 N−1
0 N̂ −2 0 N̂−2 N −1 N N + 1 N−1

∣∣∣∣∣
+

∣∣∣∣∣ N̂ −1 0 N̂−3 0 N N−2 N−1 N
0 N̂ −1 0 N̂−3 N N−2 N−1 N

∣∣∣∣∣
]

+ 6α4(z)

[∣∣∣∣∣ N̂ −1 0 N̂−4 N−2 0 0 N N−3 N−1 N
0 N̂ −1 0 0 N̂−4 N−2 N N−3 N−1 N

∣∣∣∣∣
+

∣∣∣∣∣ N̂ −2 0 N̂−2 0 N −1 N N + 2 N−1
0 N̂ −2 0 N̂−2 N −1 N N + 2 N−1

∣∣∣∣∣
−
∣∣∣∣∣ N̂ −3 N −1 0 0 N̂−2 0 N −2 N N + 1 N−1

0 0 N̂ −3 N −1 0 N̂−2 N −2 N N + 1 N−1

∣∣∣∣∣
+

∣∣∣∣∣ N̂ −2 0 N̂−3 N−1 0 0 N −1 N N + 1 N−2
0 N̂ −2 0 0 N̂−3 N−1 N −1 N N + 1 N−2

∣∣∣∣∣
+

∣∣∣∣∣ N̂ −1 0 N̂−3 0 N + 1 N−2 N−1 N
0 N̂ −1 0 N̂−3 N + 1 N−2 N−1 N

∣∣∣∣∣
−
∣∣∣∣∣ N̂ −1 0 N̂−3 0 N N−2 N−1 N+ 1

0 N̂ −1 0 N̂−3 N N−2 N−1 N+ 1

∣∣∣∣∣
−
∣∣∣∣∣ N̂ −2 N 0 0 N̂−3 0 N −1 N−2 N−1 N

0 0 N̂ −2 N 0 N̂−3 N −1 N−2 N−1 N

∣∣∣∣∣
−
∣∣∣∣∣ N̂ −2 0 N̂−2 0 N −1 N N + 1 N

0 N̂ −2 0 N̂−2 N −1 N N + 1 N

∣∣∣∣∣
]

= 0,

and

D2
t ( f · f )−2|g|2 = −4

∣∣∣∣∣ N̂ −2 0 N̂−2 0 N −1 N N−1 N
0 N̂ −2 0 N̂−2 N −1 N N−1 N

∣∣∣∣∣= 0,

where the bold type denotes the contributions from the second half of the determinant. Up to now, we have proved
that f and g defined in the double Wronskian form indeed satisfy (9) and (11). As sample application with c1 = 1,
the bright one-solitonic solution is given as

u = 2(k1 + k∗1)e
−∫α2(z)dz eε1−ε∗1

eε1+ε∗1 + e−ε1−ε∗1
= 2k1Re−

∫
α2(z)dz sech(2ε1R)eiε1I , (13)

where k1R is the real part of k1 with ε1R and ε1I as the real and imaginary parts of ε1. And the bright two-solitonic
solution can be derived as below

u =
Λ1 cosh(2ε2R)e2iε1I +Λ2 cosh(2ε1R)e2iε2I +Λ3

[
sinh(2ε2R)e2iε1I − sinh(2ε1R)e2iε2I

]
ϒ1 cosh(2ε1R + 2ε2R)+ϒ2 cosh(2ε1R −2ε2R)+ϒ3 cos(ε1I − ε2I)

e−
∫

α2(z)dz, (14)

where

Λ1 = 2k1R

[
k2

1R − k2
2R +(k1I − k2I)

2
]
, Λ2 = 2k1R

[
−k2

1R + k2
2R +(k1I − k2I)

2
]
, Λ3 = 4ik1Rk2R (k1I − k2I) ,

ϒ1 =
1
2

[
(k1R − k2R)2 +(k1I − k2I)

2
]
, ϒ2 =

1
2

[
(k1R + k2R)2 +(k1I − k2I)

2
]
, ϒ3 = 8k1Rk2R,
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with k jR and k jI as the real and imaginary parts of
k j( j = 1,2), and ε jR and ε jI are the real and imaginary
parts of k j and ε j( j = 1,2).

3. Conservation Laws

In the following, with the aid of the Lax pair, an
infinite number of conservation laws for (1) can be de-
rived.

Supposing

Γ =
φ2

φ1
, (15)

Equation (6) can be written as the following Γ -Riccati
form:

Γt = −β (z)u∗ −2λΓ −β (z)uΓ 2. (16)

Noting

W = β (z)uΓ =
∞

∑
n=1

ωn(z,t)
(2λ )n , (17)

and substituting the expansion into (16) yield

∞

∑
n=1

ωn

(2λ )n +
β (z)2uu∗

2λ
+

∞

∑
n=2

ωn−1,t

(2λ )n

−ut

u

∞

∑
n=2

ωn−1

(2λ )n +
∞

∑
n=2

∑n−1
k=1 ωkωn−1−k

(2λ )n = 0.

(18)

According to the coefficients equations of the equal
powers of 2λ , the recurrence relation can be obtained
as below:

ω1 = −β (z)2uu∗, (19)

ωn = −ωn−1,t +
ut

u
ωn−1 −

n−1

∑
k=1

ωkωn−1−k.

(n = 2,3, · · · )
(20)

Considering the consistent relation (lnφ1)tz = (lnφ1)zt ,
we can get the following conservative form for (1):

(λ +W)z =
[

A +
B

β (z)u
W
]

t
, (21)

where λz = 0 corresponding to the isospectral condi-
tion with A and B are defined above in the Lax pair.
Inserting W , A and B into (21) and equating the equal

power of 2λ to be zero, we can get an infinite number
of conservation laws in the form

∂Tk

∂z
+

∂Xk

∂t
= 0, (22)

where Tk and Xk are called conserved density and flux,
respectively. Here, we list the first three conservation
laws:

T1 = −c0e2
∫

α2(z)dzuu∗, (23)

X1 = c0e2
∫

α2(z)dz
[
α1(z)|u|2 +

3
2

c0α4(z)e2
∫

α2(z)dz|u|4

+ iα3(z)(u∗ut −uu∗t )

+ α4(z)(uu∗tt −utu∗t + uttu∗)
]
, (24)

T2 = c0e2
∫

α2(z)dzuu∗t , (25)

X2 = c0e2
∫

α2(z)dz
[ i

2
α5(z)|u|4 −α1(z)uu∗t

−3c0α4(z)e2
∫

α2(z)dzu2u∗u∗t
+ iα3(z)(uu∗tt −utu∗t )

−α4(z)(uu∗ttt −utu∗tt + uttu∗t )
]
,

(26)

T3 =−c0e2
∫

α2(z)dz
[

1
2

c0e2
∫

α2(z)dz|u|4 + uu∗tt

]
, (27)

X3 = c0e2
∫

α2(z)dz
{1

2
c0e2

∫
α2(z)dz[α1(z)|u|2

−α4(z)u2
t u∗2 + 5α4(z)u2u∗2

t
]

+ c0α4(z)e2
∫

α2(z)dz|u|2[c0e2
∫

α2(z)dz|u|4
+ uttu∗ + utu∗t + 4uu∗tt

]
+ α1(z)uu∗tt

−2iα5(z)u2u∗u∗t + iα3(z)
[
utu∗tt −uu∗ttt

]
+ α4(z)

[
uttu∗tt −utu∗ttt + uu∗tttt

]}
.

(28)

4. Discussions and Conclusions

Optical solitons in fibers have attracted much in-
terest for their potential applications in the long-haul
optical communication systems or all-optical ultrafast
switching devices and their unique properties of propa-
gation without distortion and spreading. They may be-
come the ideal information carriers in long-distance
communications. The femtosecond pulse propagation
is governed by the HNLS equation with the effects of
TOD, SS and SRS. Considering real applications in
the long-distance communications and manufacturing
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(a)

(b)

Fig. 1. The intensity evolution plot of the bright one-solitonic
solution with parameters: (a): k1 = 0.8, ε10 = 3, α1(z) = 1,
α2(z) = 0, α3(z) = 0.5, and α4(z) = 0.2; (b): k1 = 0.5, ε10 =
0.3+0.2i, α1(z) = sinz, α2(z) = 0.04, α3(z) = 1+ sin z, and
α4(z) = 0.2.

problems, a generalized VC-HNLS equation, i. e. (1),
has been analytically investigated under special coeffi-
cients constraints in this paper.

With the help of the Lax pair for (1) under con-
straints (2) – (4), the bright N-solitonic solution in dou-
ble Wronskian form of (1) has been constructed and
verified by direct substitution into the bilinear form,
i. e. (9) and (11), via the Wronskian technique. Associ-
ated with the complete integrability of (1) in the sense
of possessing Lax pair under special constraints, an in-
finite number of conservation laws can be derived with
the first three ones listed. Actually, there are many au-
thors who have studied constraints (2) – (4) called the
generalized Hirota condition from mathematical and
physical viewpoints [36 – 40, 42, 51] (and references
therein). Constraints (2) – (4) provide conditions for (1)
to be completely integrable. As a completely integrable
model under the special constraints, (1) has many good
properties such as multi-solitonic solutions and an in-

(a)

0
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t

0
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1.5
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5
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15

0

Fig. 2. The head-on evolution plot of the bright two-solitonic
solution with parameters: (a): k1 = 0.5+0.6i, k2 = 0.7, ε10 =
−0.5−2i, ε20 = 5, α1(z) = 1, α2(z) = 0, α3(z) = 0.1, and
α4(z)=0.2; (b): the over-taking evolution plot of the bright
two-solitonic solution with the same parameters with (a) ex-
cept k1 = 0.5+0.1i, k2 = 0.4−0.1i, ε10 = −6−2i, ε20 = 2,
and α2(z) = 0.05.

finite number of conservation laws which have been
obtained in this paper.

For the sample bright one-solitonic solution (13),
the evolution of its intensity is

|u|2 = 4k1R
2e−2

∫
α2(z)dz sech2(2ε1R). (29)

Supposing Rek1 > 0, with vanishing boundary condi-
tion for the bright one-solitonic solution (13), it can be
found that∫ +∞

−∞
e2
∫

α2(z)dz|u|2dt = 4k1R, (30)

which indicates that the energy
∫+∞
−∞ |u|2dt will expo-

nentially decay/grow as the rate e2
∫

α2(z)dz. From Ex-
pression (29), α2(z) is a primary factor affecting the
intensities of the solitary waves and the wave veloc-
ity α1(z)− 4k1Iα3(z) + 4α4(z)k1R

2 − 12k1I
2α4(z) can
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be influenced by α1(z), α3(z) and α4(z). Figures 1(a)
and 1(b) depict the intensity evolutions of the bright
one-solitonic solutions with different parameters. The
intensity of the bright soliton in Figure 1(a) keeps
invariant without perturbation while the one in Fig-
ure 1(b) undergoes the attenuation and periodic oscilla-
tion with α2(z) as a nonzero constant and trigonomet-
ric function α1(z) and the periodic dispersion α3(z).
Figure 2(a) shows an elastic head-on collision of two
bright solitons with a phase shift at the moment of
interaction while the two over-taking solitons in Fig-
ure 2(b) even do not interact for a long propagation
distance with attenuating amplitudes.

In conclusion, the generalized VC-HNLS equation
which describes the pulse propagation in the femtosec-
ond regime has been investigated analytically in this
paper. By virtue of the Wronskian technique, the bright
solitonic solutions in double Wronskian form of the
generalized VC-HNLS equation have been constructed
with the help of the Lax pair under certain coefficient
constraints, and verified by direct substitution into its
bilinear form. Additionally, an infinite number of con-
servation laws have been derived for the generalized
VC-HNLS equation. It can be expected that the tech-

niques used in this paper can also be used to investi-
gate the integrable properties of several other NLEEs
with variable coefficients. The constraints under which
the solitonic solutions are derived, may be helpful for
studying the soliton propagation and dispersion man-
agement systems theoretically and experimentally.
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Appendix A

The following Wronskian determinant identities are utilized in the proof: process,

[
N

∑
j=1

(k j − k∗j)

]
(N̂ −1; N̂ −1) = (N̂ −2,N; N̂ −1)− (N̂ −1; N̂ −2,N),

[
N

∑
j=1

(k j − k∗j)

]2

(N̂ −1; N̂ −1) = (N̂ −3,N −1,N; N̂ −1)+ (N̂−2,N + 1; N̂ −1)

−2(N̂ −2,N; N̂ −2,N)+ (N̂ −1; N̂ −3,N −1,N)+ (N̂−1; N̂ −2,N + 1),[
N

∑
j=1

(k j − k∗j)

]3

(N̂ −1; N̂ −1) = (N̂ −4,N −2,N −1,N; N̂ −1)+ 2(N̂ −3,N −1,N + 1; N̂ −1)

−3(N̂ −3,N −1,N; N̂ −2,N)−3(N̂ −2,N + 1; N̂ −2,N)+ (N̂ −2,N + 2; N̂ −1)

−(N̂ −1; N̂ −4,N −2,N−1,N)−2(N̂−1; N̂ −3,N −1,N + 1)+ 3(N̂−2,N; N̂ −3,N −1,N)

+3(N̂ −2,N; N̂ −2,N + 1)− (N̂−1; N̂ −2,N + 2),

(N̂ −1; N̂ −1)


[

N

∑
j=1

(k j − k∗j )

]2

(N̂ −1; N̂ −1)

=

{[
N

∑
j=1

(k j − k∗j)

]
(N̂ −1; N̂ −1)

}2

,
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(N̂; N̂ −2)


[

N

∑
j=1

(k j − k∗j)

]3

(N̂ −1; N̂ −1)

= (N̂ −1; N̂ −1)


[

N

∑
j=1

(k j − k∗j)

]3

(N̂; N̂ −2)


=


[

N

∑
j=1

(k j − k∗j)

]2

(N̂; N̂ −2)


{[

N

∑
j=1

(k j − k∗j)

]
(N̂ −1; N̂ −1)

}

=


[

N

∑
j=1

(k j − k∗j)

]2

(N̂ −1; N̂ −1)


{[

N

∑
j=1

(k j − k∗j)

]
(N̂; N̂ −2)

}
,

[
N

∑
j=1

(k j − k∗j)

]
(N̂ −1,N + 1; N̂ −3,N −1) = (N̂ −2,N,N + 1; N̂ −3,N −1)

= (N̂ −1,N + 2; N̂ −3,N −1)− (N̂−1,N + 1; N̂ −4,N −2,N −1)− (N̂−1,N + 1; N̂ −3,N),[
N

∑
j=1

(k j − k∗j)

]
(N̂; N̂ −4,N −2,N −1) = (N̂ −1,N + 1; N̂ −4,N −2,N −1)

−(N̂; N̂ −5,N −3,N −2,N −1)− (N̂; N̂ −4,N −2,N),[
N

∑
j=1

(k j − k∗j)

]
(N̂ −2,N,N + 1; N̂ −2) = (N̂ −3,N −1,N,N + 1; N̂ −2)

+(N̂ −2,N,N + 2; N̂ −2)− (N̂ −2,N,N + 1; N̂ −3,N −1).

The following two determinant identities are also be used:

(1) |D,a,b||D,c,d|− |D,a,c||D,b,d|+ |D,a,d||D,b,c|= 0,

where D is an N × (N −2) matrix with a,b,c and d representing N-dimensional column vectors.

(2)
N

∑
j=1

|a1, · · · ,a j−1,ba j,a j+1, · · · ,aN | =
(

N

∑
j=1

b j

)
|a1, · · · ,aN |,

where a j are N-dimensional column vectors and ba j represent (b1a1 j,b2a2 j, · · · ,bNaN j)T ( j = 1,2, · · · ,N).
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and B. Tian, Commun. Theor. Phys. 49, 1125 (2007).

[25] R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, Phys. Rev. E
70, 066603 (2004).

[26] B. Tian and Y. T. Gao, Phys. Lett. A 342, 228 (2005).
[27] B. Tian, Y. T. Gao, and H. W. Zhu, Phys. Lett. A 366,

223 (2007).
[28] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142

(1973).
[29] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171

(1973).
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