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We establish a mathematical model for the three-patch diffusion predator-prey system with time
delays. The theory of Hopf bifurcation is implemented, choosing the time delay parameter as a bifur-
cation parameter. We present the condition for the existence of a periodic orbit of the Hopf-type from
the positive equilibrium.
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1. Introduction and Some Notations

One of the first successes of mathematical ecology
was the demonstration of periodic population oscilla-
tions in a stationary medium. The model created by
Volterra for a community in which organisms of one
population provide food for those of the other, cleared
up the many, at first sight incomprehensible, phenom-
ena of periodic population change, which in no way
could be associated with periodic variations of envi-
ronmental factors (primarily, climatic ones). Similar
natural phenomena could be observed in communities
with one population parasitizing on the organisms of
another species. Communities of such type are usu-
ally named predator-prey or host-parasite systems. It
is known that time delays have the tendency of pro-
ducing oscillations or periodic solutions in otherwise
nonoscillatory models of single species growths. This
is also true for multi-species systems. It would be in-
teresting to know, how the system behaviour is affected
when the environmental conditions are impaired (for
the predator), the fertility of the prey is enhanced, or
some new defence strategies are employed. If orig-
inally the system has no nontrivial stable equilibria
and produces no oscillations, the impairment first re-
sults in damped oscillations. Though stability of the
nontrivial equilibrium is preserved, the stability do-
main is reduced, the predator already fails to regulate
the predator population in any domain of the phase
plane. Next the oscillations become undamped and a
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stable limit cycle emerges; these oscillations appear
suddenly.

The predator-prey model with or without time delay
has been extensively investigated. Many results regard-
ing boundedness, stability, permanence and existence
of periodic solutions have been obtained and can be
found in some monographs (e. g. [1 – 3]).

The time delay effect or diffusion between patches
refer to the dynamics of a predator being related to
the predation in the past. Moreover, due to the spa-
tial heterogeneity and unbalanced food resources, the
migration phenomenon of biological species can of-
ten occur between heterogeneous spatial environments
or patches. Mathematicians paid attention to this phe-
nomenon because of its great ecological significance
(see [4, 5]).

The present paper deals with a predator-prey model,
with time delays, of the form

ẋ1 = x1(C1 − x1 −a1y)+ ε(x2 + x3 + x2x3 − x1),
ẋ2 = x2(C2 − x2 −a2y)+ ε(x1 + x3 + x1x3 − x2),

ẋ3 = x3(C3 − x3 −a3y)+ ε(x1 + x2 + x1x2 − x3),

ẏ = y
{
− e + b1x1 + b2x2 + b3x3

+
3

∑
i=1

βi

t∫
−∞

αi exp[−αi(t − τ)]xi(τ)dτ − y
}
.

(1)

We first introduced model (1) in [1], where the
boundedness and stability of solutions of the system
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were studied. In the system, we assumed continuous
time delays and the prey could diffuse between three
patches of a heterogeneous environment with barri-
ers between the patches, but for the predator, the dif-
fusion didn’t involve a barrier between the patches.
Such a model is known to have a rich ecological back-
ground and is conform to more realistic natural situa-
tions. From the ecological point of view, time delays
and diffusion processes occur simultaneously very of-
ten, in almost every true situation.

The densities of predator and prey at three patches
in (1), specified below, are rescaled so that the intraspe-
cific coefficients are equal to 1: xi is the density of prey
in the patch i (i = 1,2,3); y is the density of preda-
tors; Ci (i = 1,2,3) describes the carrying capacity of
the prey in the patch i; e represents the intrinsic death
rate of the predator in an environment without any prey
involved; ai,bi (i = 1,2,3) are the coefficients of in-
stantaneous predation in the patch i; αi (i = 1,2,3) is
the time delay parameter; and ε is the diffusion coeffi-
cient between three patches for the prey. In the above
parameters, we assume that βi ≥ 0 (i = 1,2,3) and the
remaining parameters are all positive.

2. Stability Analysis

Taking advantage of the Hopf bifurcation theory and
choosing the time delay parameter as a bifurcation pa-
rameter, we present the condition for the existence of a
periodic orbit of the Hopf-type from the positive equi-
librium. The methods used here are adopted from Zhu-
jun et al. [6, 7].

We need to introduce three supplementary nonneg-
ative variables:

x4 =
∫ t

−∞
α1 exp[−α1(t − τ)]x1(τ)dτ,

x5 =
∫ t

−∞
α2 exp[−α2(t − τ)]x2(τ)dτ,

x6 =
∫ t

−∞
α3 exp[−α3(t − τ)]x3(τ)dτ.

Then model (1) can be transformed into the following
equivalent autonomous differential system:

ẋ1 = x1(C1 − x1 −a1y)+ ε(x2 + x3 + x2x3 − x1),
ẋ2 = x2(C2 − x2 −a2y)+ ε(x1 + x3 + x1x3 − x2),
ẋ3 = x3(C3 − x3 −a3y)+ ε(x1 + x2 + x1x2 − x3),

ẋ4 = α1x1 −α1x4,

ẋ5 = α2x2 −α2x5,

ẋ6 = α3x3 −α3x6,

ẏ = y(−e + b1x1 + b2x2 + b3x3

+ β1x4 + β2x5 + β3x6 − y). (2)

Now we give sufficient conditions for system (2) to
have a nonzero equilibrium, which is globally asymp-
totic and stable in R7

+. It can be shown that R7
+ = {z =

(x1,x2,x3,x4,x5,x6,y)T ∈ R7|z ≥ 0} is a positively in-
variant set with respect to system (2). For the proof
see [1].

It is obvious that system (2) can admit three kinds
of equilibrium in R7

+:

E0 = (0,0,0,0,0,0,0),

E ′ = (x′1 > 0,x′2 > 0,x′3 > 0,

x′4 = x′1,x
′
5 = x′2,x

′
6 = x′3,0),

E∗ = (x∗1 > 0,x∗2 > 0,x∗3 > 0,

x∗4 = x∗1,x
∗
5 = x∗2,x

∗
6 = x∗3,y

∗ > 0).

We observe that the positive equilibrium E∗ satisfies
the system

x∗1 = x∗4, x∗2 = x∗5, x∗3 = x∗6,
x∗1(C1 − x∗1 −a1y∗1)+ ε(x∗2 + x∗3 + x∗2x∗3 − x∗1) = 0,

x∗2(C2 − x∗2 −a2y∗2)+ ε(x∗1 + x∗3 + x∗1x∗3 − x∗2) = 0,

x∗3(C3 − x∗3 −a3y∗3)+ ε(x∗1 + x∗2 + x∗1x∗2 − x∗3) = 0,

y∗
[− e +(b1 + β1)x∗1 +(b2 + β2)x∗2
+(b3 + β3)x∗3 − y∗

]
= 0.

The existence of the positive equilibrium E∗ in (2) can
be obtained as follows:

Let us introduce the auxiliary system

ẋ1 = x1(C1 − x1 −a1y)+ ε(x2 + x3 + x2x3 − x1),
ẋ2 = x2(C2 − x2 −a2y)+ ε(x1 + x3 + x1x3 − x2),

ẋ3 = x3(C3 − x3 −a3y)+ ε(x1 + x2 + x1x2 − x3),

ẏ = y
[− e +(b1 + β1)x1

+(b2 + β2)x2 +(b3 + β3)x3 − y
]
.

(3)

It can be shown that, if (x∗1,x
∗
2,x

∗
3,y) is a positive equi-

librium of (1), (x∗1,x
∗
2,x

∗
3,x

∗
4 = x∗1,x

∗
5 = x∗2,x

∗
6 = x∗3,y

∗)
is positive equilibrium of system (2).

Therefore, it is necessary to discuss the existence of
the positive equilibrium of system (3).



M. Ismail et al. · Solutions of a Three-Patch Diffusion Predator-Prey System 407

Applying some results provided in [8, 9], the follow-
ing lemma can be proved.

Lemma 1. In system (3), there exists a
unique equilibrium of the form E ′ = E ′(ε) =
(x′1(ε),x′2(ε),x′3(ε),0), where x′1(ε) > 0, i = 1,2,3.
Now, we define

d = d(ε) = −e +(b1 + β1)x′1(ε)+ (b2 + β2)x′2(ε)
+ (b3 + β3)x′3(ε).

If d > 0, then system (3) has a positive equilibrium E∗.

Proof. The proof of this lemma is cited in [1].

3. Main Results

Considering that the time delay effect is involved
with the same prey species in three patches, we may
suppose that α1 = α2 = α3 = α . Now, by choosing α as
a bifurcation parameter, let us consider the conditions
for the existence of the periodic orbits of the Hopf-type
from the positive equilibrium E∗ in system (2).

The Jacobian matrix of (2) at E∗ is expressed as

J =




C1 −2x∗1 −a1y∗ − ε ε + εx∗3 ε + εx∗2 0 0 0 −a1x∗1
ε + εx∗3 C2 −2x∗2 −a2y∗ − ε ε + εx∗1 0 0 0 −a2x∗2
ε + εx∗2 ε + εx∗1 C3 −2x∗3 −a1y∗ − ε 0 0 0 −a3x∗3

α1 0 0 −α1 0 0 0

0 α2 0 0 −α2 0 0

0 0 α3 0 0 −α3 0

b1y∗ b2y∗ b3y∗ β1y∗ β2y∗ β3y∗ A4




, (4)

where A4 =−e+b1x∗1 +b2x∗2 +b3x∗3 +β1x∗4 +β2x∗5 +β3x∗6 −2y∗. Let A1 = C1 −2x∗1 −a1y∗−ε , A2 = C2 −2x∗2 −
a2y∗ − ε , A3 = C3 −2x∗3 −a3y∗ − ε . Then

|J −λ I|=




A1 −λ ε + εx∗3 ε + εx∗2 0 0 0 −a1x∗1
ε + εx∗3 A2 −λ ε + εx∗1 0 0 0 −a2x∗2
ε + εx∗2 ε + εx∗1 A3 −λ 0 0 0 −a3x∗3

α1 0 0 −α1 −λ 0 0 0
0 α2 0 0 −α2 −λ 0 0
0 0 −α3 0 0 −α3 −λ 0

b1y∗ b2y∗ b3y∗ β1y∗ β2y∗ β3y∗ A4 −λ




.

By computation, the corresponding characteristic
equation of the eigenvalues for (4) can be found in the
following form:

p(λ ) = |J−λ I|
= λ 7 + I1(α)λ 6 + I2(α)λ 5

+ I3(α)λ 4 + I4(α)λ 3 + I5(α)λ 2

+ I6(α)λ 1 + I7(α) = 0,

(5)

where

I1(α) = α1 + α2 + α3 −A1 −A2 −A3 −A4,

I2(α) = −α3A1 −α2A2 −α3A4 −α2A3 + A1A3

−2ε2x∗3 + b1y∗a1x∗1 + a3x∗3b3y∗ + b2y∗a2x∗2
+ α2α1 + α2α3 + 3ε2 + α1α3 −α3A2

+ A2A3 −α2A1 + A2A4 −α3A3 −α1A1

−2ε2x∗1 −2ε2x∗2 −α1A4 − ε2x∗2
3 −α2A4

+ A3A4 − ε2x∗2
1 + A1A2 − ε2x∗2

2 −α1A3

+ A1A4 −α1A2.

We use the software Maple 9.5 Software in our com-
putations and, for convenience, we do not introduce the
remaining coefficient functions.

Lemma 2. If the conditions

(H1) Ii(α) > 0, i = 1,2, . . . ,7,

∆2 > 0, ∆4 > 0,

(H2) ∆ = 0
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are satisfied, then the characteristic equation (5) has a
pair of purely imaginary roots, and the remaining roots
have negative real parts.

Proof. It is known from [10] that the Hurwitz deter-
minant

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

I1 I3 I5 I7 0 0
1 I2 I4 I6 0 0
0 I1 I3 I5 I7 0
0 1 I2 I4 I6 0
0 0 I1 I3 I5 I7

0 0 1 I2 I4 I6

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

if and only if (5) has a pair of opposite roots,
ω and −ω , and satisfies the following equations:

p1(λ ) = λ 7 + I2λ 5 + I4λ 3 + I6λ = 0,

p2(λ ) = I1λ 6 + I3λ 4 + I5λ 2 + I7 = 0.

Thus, I1ω6 + I3ω4 + I5ω2 + I7 = 0 by (H1). Since
I1, I3, I5, I7 > 0, ω2 is a negative real number or com-
plex number. In the latter case, let ω = a + ib,a 
=
0,b 
= 0. Then P(λ ) can be resolved as follows:

P(λ ) = (λ 2 −ω2)

· (λ 5 + b1λ 4 + b2λ 3 + b3λ 2 + b4λ + b5).

By comparing the coefficients with (4), we obtain

b1 = I1, b2 = I2 + ω2, b3 = I3 + b1ω2,

b4 = I4 + b2ω2, b5 = I5 + b3ω2,

I6 = −b4ω2, I7 = −b5ω2.

Moreover, a−bi and −a + bi are also the roots of

P3(λ ) = λ 5 +b1λ 4 +b2λ 3 +b3λ 2 +b4λ +b5 = 0.

Therefore, we have

∆b =

∣∣∣∣∣∣∣∣∣

b1 b3 b5 0

1 b2 b4 0

0 b1 b3 b5

0 1 b2 b4

∣∣∣∣∣∣∣∣∣
= b1b2b3b4 −b1b5b2

2 −b2
1b2

4 + 2b1b4b5

−b2
3b4 + b2b3b5 −b2

5

= 0,

which leads to

∆4 =

∣∣∣∣∣∣∣∣∣

I1 I3 I5 I7

1 I2 I4 I6

0 I1 I3 I5

0 1 I2 I4

∣∣∣∣∣∣∣∣∣
= b1(b2 −ω2)(b3 −ω2b1)(b4 −ω2b2)

−b1(b2 −ω2)(b5 −ω2b3)−b2
1(b4 −ω2b2)

+ 2b1(b4 −ω2b2)(b5 −ω2b3)

+ b2
1(b2 −ω2)(−ω2b4)

−b1(b3 −ω2b1)(−ω2b4)

− (b3 −ω2b1)2(b4 −ω2b2)

+ (b2 −ω2)(b3 −ω2b1)(b5 −ω2b3)

− (b5 −ω2b3)2 −b1(b2 −ω2)(−ω2b5)

+ (b3 −ω2b1)(−ω2b5)

= b1b2b3b4 + 2b1b4b5 + b2b3b5 −b1b2
2b5

−b2
1b2

4 −b2
3b4 −b2

5 = 0.

This contradicts assumption (H1), and hence ω2 is a
negative real number, which implies that (4) has a pair
of purely imaginary roots ±iω .

Since ω satisfies P1(λ ) = 0 and P2(λ ) = 0, we have

ω6 + I2ω4 + I4ω2 + I6 = 0 and

I1ω6 + I3ω4 + I5ω2 + I7 = 0.

It can be obtained that

ω4 =
I5 − I1I4

I1I2 − I3
+

I7 − I1I6

I1I2 − I3
.

By (H1), ∆4 > 0; then b1b2b3b4 +2b1b4b5 +b2b3b5 −
b1b2

2b5 −b2
1b2

4 −b2
3b4 −b2

5 > 0.
By the well-known Routh-Hurwitz stability condi-

tion, the roots of the equation

P3(λ ) = λ 5 +b1λ 4 +b2λ 3 +b3λ 2 +b4λ +b5 = 0

all have negative real parts. This completes the proof.
The following theorem dominates our main result

concerning the existence of periodic orbits in sys-
tem (2).

Theorem. For system (2), we suppose that the co-
efficients of the characteristic equation (4) are all func-
tions of the parameter α , if α = α∗ > 0, such that

(H3) Ii(α∗) > 0, i = 1,2, . . . ,7, ∆2(α∗) > 0,
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(H4) ∆(α∗) = 0,

(H5) Denote that

∆′(α) = [(2I2
2 −14I2

2I4 + 8I2I6 + 10I2
4)ω2

+(2I2
2I4 −2I2

2I6 −12I2I2
4 + 16I4I6)ω2]

dI1

dα

+(2I3
2I4 −12I2I4I6 + 6I2

6)
dI1

dα
+[(6I1I3

2 −6I1I2I4 + 6I2
1 I4 −6I1I6 −4I2

2I3

+ 4I3I4 −2I2I5)ω2 +(6I1I2
4 −6I1I2

2 I4

−4I2I3I4 + 4I3I6 −2I4I5)ω2 +(6I1I2I6

−6I1I2
2 I6 + 6I1I4I6 −4I2I3I6 −2I5I6)]

dI2

dα
+[(12I2I4 −2I3

2 −6I6)ω4

+(2I2I6 −2I2
2I4 + 10I2

4)ω2

+(10I4I6 −2I2
2 I6)]

dI3

dα
− [(6I1I2

2 −6I1I4 + 4I2I4 + 2I5)ω4

+(6I1I2I4 −6I1I6 + 4I3I4)ω2

+(6I1I2I6 + 4I3I6)]
dI4

dα
− [(2I2

2 −7I4)ω4

+(2I2I4 −6I6−3I4)ω2 −2I2I6]
dI5

dα
+[(−6I1I2 −4I3)ω2

+(−6I1I4 + 2I5)ω2 −6I1I6]
dI6

dα

+[−2I2ω4 −10I4ω2 −6I6]
dI7

dα
,

∆′(α)|α=α∗ 
= 0,

holds, then a periodic orbit of the Hopf-type bifurca-
tion from the positive equilibrium E∗ occurs as the
value of α passes through α∗.

Proof. If there exists an α = α∗ > 0, such that the
conditions (H3) and (H4) hold, then, by Lemma 2, the
characteristic equation (4) at the equilibrium E∗ has a
pair of purely imaginary roots, and the remaining roots
have negative real parts. According to the Hopf bifur-
cation theorem (see [11]), it is necessary to verify that
Re{dλ/dα} 
= 0 at α = α∗.

From (4), by directly calculating dλ/dα , we have

dλ
dα

=
[

dI1

dα
λ 6 +

dI2

dα
λ 5 +

dI3

dα
λ 4 +

dI4

dα
λ 3 +

dI5

dα
λ 2

+
dI6

dα
λ +

dI7

dα

][
7λ 6 + 6I1λ 5 + 5I2λ 4 + 4I3λ 3

+ 3I4λ 2 + 2I5λ + I6

]−1

.

Therefore,

dλ
dα

∣∣
λ=iω =

[(
dI1

dα
ω6 +

dI3

dα
ω4 +

dI5

dα
ω2 +

dI7

dα

)

+
(

dI2

dα
ω5 +

dI4

dα
ω3 +

dI6

dα
ω

)
i
][

(7ω6 + 5I2ω4

+3I4ω2 + I6)+ (6I1ω5 + 4I3ω3 + 2I5ω)i
]−1

.

Thus we obtain

Re
{

dλ
dα

}∣∣
α=α∗ =

∆′(α)
Q(α)

,

where

∆′(α) =
(

dI1

dα
ω6 +

dI3

dα
ω4 − dI5

dα
ω2 +

dI7

dα

)

· (7ω6 + 5I2ω4 −3I4ω2 + I6)

+
(

dI2

dα
ω5 − dI4

dα
ω3 +

dI6

dα

)

· (6I1ω5 −4I3ω3 + 2I5ω),

Q(α) = (7ω6 + 5I2ω4 −3I4ω2 + I6)2

+(6I1ω5 −4I3ω3 + 2I5ω)2.

From the proof of Lemma 2, we see that

ω6 + I2ω4 + I4ω2 + I6 = 0,

ω4 =
I5 − I1I4

I1I2 − I3
+

I7 − I1I6

I1I2 − I3
.

Hence, after simplifying, we get

∆′(α) = [(2I2
2 −14I2

2I4 + 8I2I6 + 10I2
4)ω4

+(2I2
2I4 −2I2

2 I6 −12I2I2
4 + 16I4I6)ω2]

dI1

dα
+(2I3

2I4 −12I2I4I6 + 6I2
6)

dI1

dα
+[(6I1I3

2 −6I1I2I4 + 6I2
1I4 −6I1I6

−4I2
2I3 + 4I3I4 −2I2I5)ω2

+(6I1I2
4 −6I1I2

2 I4 −4I2I3I4 + 4I3I6−2I4I5)ω2

+(6I1I2I6 −6I1I2
2 I6 + 6I1I4I6
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−4I2I3I6 −2I5I6)]
dI2

dα

+[(12I2I4 −2I3
2 −6I6)ω4

+(2I2I6 −2I2
2I4 + 10I2

4)ω2

+(10I4I6 −2I2
2I6)]

dI3

dα

− [(6I1I2
2 −6I1I4 + 4I2I4 + 2I5)ω4

+(6I1I2I4 −6I1I6 + 4I3I4)ω2

+(6I1I2I6 + 4I3I6)]
dI4

dα

− [(2I2
2 −7I4)ω4

+(2I2I4 −6I6−3I4)ω2 −2I2I6]
dI5

dα
+[(−6I1I2 −4I3)ω2

+(−6I1I4 + 2I5)ω2 −6I1I6]
dI6

dα

+[−2I2ω4 −10I4ω2 −6I6]
dI7

dα
.

By (H5), we have

Re
{

dλ
dα

}∣∣
α=α∗ 
= 0.

The proof of the theorem is now completed.
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