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The EPR parameters g factors g‖, g⊥ and the hyperfine structure constants A‖ and A⊥ for the
square planar Cu2+ centers in K2PdX4 (X = Cl, Br) are theoretically investigated from the pertur-
bation formulas of these parameters for a 3d9 ion under tetragonally elongated octahedra. In these
formulas, not only the contributions from the conventional crystal-field (CF) mechanism, but also
those from the charge-transfer (CT) mechanism are taken into account. The related molecular orbital
coefficients are uniformly determined from the cluster approach, and the tetragonal field parameters
Ds and Dt are obtained from the superposition model and the local structures of the systems. Based
on only one adjustable parameter, the present results are in reasonable agreement with the observed
values. Importance of the charge-transfer contributions is more significant for ligand Br than that for
Cl due to the stronger covalency and much larger spin-orbit coupling coefficient of the former.

Key words: Crystal- and ligand fields; Electron paramagnetic resonance (EPR); Cu2+;
K2PdX4 (X = Cl, Br).

1. Introduction

Containing square planar PdX4
2− (X = Cl, Br)

groups, K2PdX4 are interesting systems due to the
properties of non-totally symmetrically distortion
[1, 2], covalency [3], optical [4, 5], reacting (bond-
ing) with some important biological molecules [6 – 8]
and selective liquid membrane transport (of PdCl42−
group) behaviours [9, 10]. On the other hand, Cu2+

(3d9, equivalent to one 3d hole) can be regarded as a
model system among the transition-metal group, hav-
ing one ground state and a single excited state under
regular octahedral environments. Particularly, the opti-
cal, local structure and electronic properties for square
planar Cu2+ clusters have also been attractive sub-
jects [11 – 14]. As is well known, electron paramag-
netic resonance (EPR) is a powerful technique to study
local structures and electronic states for transition-
metal ions in crystals, and the corresponding experi-
mental results can be expressed in terms of the EPR
parameters (g factors g‖, g⊥ and the hyperfine struc-
ture constants A‖ and A⊥). Therefore, investigations
for the square planar CuX4

2− clusters in the typical
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K2PdX4 systems are of fundamental and practical sig-
nificance. For example, EPR studies were carried out
on K2PdX4:Cu2+, and the EPR parameters were also
measured decades ago [13, 14].

In general, analysis of the microscopic mechanisms
of the EPR parameters can reveal useful information
about local structures and electronic properties of these
systems. The microscopic origins of the EPR parame-
ters for 3dn ions in crystals result from both the crystal-
field (CF) mechanism (related to the influence of lower
CF excitations involving antibonding orbitals) and the
charge-transfer (CT) mechanism (related to the influ-
ence of higher CT excitations involving bonding or-
bitals) [15, 16]. Usually, the CF contributions are re-
garded as dominant for ionic systems due to the much
higher CT excitation levels. However, the energies of
the CT levels for the same central ion (e. g., Cu2+) de-
cline with increasing covalency of ligand (e. g., from
Cl to Br) [17]. Thus, significant CT contributions to
the EPR parameters can be expected, especially for
the ligands having very large spin-orbit coupling co-
efficient (e. g., Br). At this circumstance, interesting
and instructive investigations have been carried out on
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the EPR parameters for K2PdX4:Cu2+ by means of the
molecular orbital (MO) scheme [18 – 20] and diagonal-
izing of the complete energy matrix [21]. The detailed
perturbation formulas of the EPR parameters were es-
tablished in [18], by including both the CF and CT
contributions in terms of various adjustable parameters
(i. e., four independent MO coefficients α0, α1, α2, and
µ). Even though, local structures of the systems were
not involved in the studies of the EPR parameters.

In order to investigate this problem to a better ex-
tent, the previous treatments of the EPR parameters
based on the complicated perturbation formulas [18]
may be improved so as to decrease the number of ad-
justable parameters and to provide more convenient
theoretical analysis of EPR spectra. In this work, the
improved formulas of the EPR parameters for a 3d9 ion
under tetragonally elongated octahedra are established
by considering both the CF and CT contributions. The
related MO coefficients are determined from the clus-
ter approach in a uniform way, instead of taking as ad-
justable parameters. Meanwhile, the local structures of
the systems are correlated to the tetragonal field pa-
rameters Ds and Dt and hence to the EPR parameters.

2. Theory and Calculations

K2PdX4 belongs to the space group D4h
1 (P4/mmm)

with one formula unit per unit cell [22, 23]. This struc-
ture consists of square planar [PdX4]2− groups stacked
above each other along four fold axis. When an impu-
rity Cu2+ is doped into K2PdX4, it may occupy host
Pd2+ site and form a square planar [CuX4]2− cluster,
with tetragonal symmetry (an elongated octahedron).

2.1. Theoretical Formulas

For a Cu2+(3d9) ion in tetragonally elongated octa-
hedra, the lower 2Eg irreducible representation would
be separated into two orbital singlets 2B1g (|x2 −y2〉)
and 2A1g (|z2〉), with the former lying lowest. Mean-
while, the upper 2T2g representation would split into
an orbital singlet 2B2g (|xy〉) and a doublet 2Eg(|xz〉,
|yz〉) [24]. By including both the CF and CT mecha-
nisms, the perturbation Hamiltonian for this 3d9 cluster
under external magnetic field can be written as:

H′ = HSO
CF + HZe

CF + Hhf
CF

+ HSO
CT + HZe

CT + Hhf
CT,

(1)

where HSO, HZe and Hhf are, respectively, the spin-

orbit coupling, the Zeeman term and the hyperfine in-
teractions. The superscripts CF and CT denote the re-
lated terms for the CF and CT mechanisms, with the
corresponding spin-orbit coupling coefficients (ζCF,
ζCF

′ and ζCT, ζCT
′), the orbital reduction factors (kCF,

kCF
′ and kCT, kCT

′), and the dipolar hyperfine structure
parameters (PCF, PCF

′ and PCT, PCT
′).

Considering the contributions to the EPR parame-
ters from the CT excitations, one can express the many-
electron wave functions of CT configurations in terms
of thirteen-electron wave functions out of t2n, ea and eb

forms. Here t2 and e stand for the irreducible represen-
tations of cubic (Oh) group. The superscripts n, a and b
denote the non-bonding orbitals, anti-bonding orbitals
(corresponding to the CF mechanism) and bonding or-
bitals (corresponding to the CT mechanism), respec-
tively. Thus, the ground state 2B1g of the 3d9 cluster
can be written as:

|2B1g
1
2

b1〉 = [ξ 2η2ζ 2θ 2ε+|θ 2ε2]. (2)

In the square bracket on the right hand of (2), the let-
ters (ξ , η , ζ and θ , ε) on the left column denote t2n and
ea orbitals and those (θ , ε) on the right column denote
eb orbitals. Under tetragonal symmetry, there are only
two irreducible representations 2B2g

b and 2Eg
b (aris-

ing from the tetragonal splitting of 2T2g
b [(t2n)6 (ea)4

(eb)3] state) having non-zero spin-orbit coupling inter-
action with the ground state 2B1g. Thus, these CT en-
ergy levels can be similarly expressed as:

|2B2g
b 1

2
b2〉 = [ξ 2η2θ 2ε2ζ+ζ−|θ 2ε+],

|2Eg
b 1

2
θ 〉 = −

√
3

2
[η2ζ 2θ 2ε2ξ +ξ−|θ+ε2]

− 1
2
[η2ζ 2θ 2ε2ξ +ξ−|θ 2ε+],

|2Eg
b 1

2
ε〉 =

√
3

2
[η2ζ 2θ 2ε2ξ +ξ−|θ+ε2]

− 1
2
[η2ζ 2θ 2ε2ξ +ξ−|θ 2ε+].

(3)

From the cluster approach, the MO orbitals

|ψt
x〉 = (Nt

x)1/2(|ϕt〉−λt
x|χpt〉),

|ψe
x〉 = (Ne

x)1/2(|ϕe〉−λe
x|χpe〉−λs

x|χs〉)
(4)

can be taken as the one-electron wave functions for the
octahedral 3d9 clusters. The subscript γ (= t2g or eg)
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stands for the irreducible representation of Oh group,
and the superscript x (= a or b) denotes the antibonding
and bonding orbitals. |ϕγ 〉 are the metal 3d orbitals,
and |χpγ〉 and |χs〉 are the ligand p- and s-orbitals. Nγ

x

and λγ
x are the normalization factors and the orbital

admixture coefficients, respectively. Thus, we have the
normalization condition:

(Nt
x)[1−2λt

xSdpt +(λt
x)2] = 1,

(Ne
x)[1−2λe

xSdpe −2λs
xSds

+(λe
x)2 +(λs

x)2] = 1.

(5)

Meanwhile, the approximate relationships

N2 = (Nt
a)2[1 +(λt

a)2Sdpt
2 −2λt

aSdpt],

N2 = (Ne
a)2[1 +(λe

a)2Sdpe
2 +(λs

a)2Sds
2

−2λe
aSdpe −2λs

aSds]

(6)

are satisfied by the anti-bonding orbitals. Here N is
the average covalency factor, characteristic of the co-
valency or metal-ligand orbital admixtures in a crystal.
In addition, the orthogonality relationships

λγ
b ≈ (λγ

aSdpγ −1)/(Sdpγ −2λγ
a) (7)

are held for the bonding and antibonding orbitals.
In general, the orbital admixture coefficients increase
with increasing the group overlap integrals, and one
can approximately adopt the proportional relationship
between the orbital admixture coefficients and the re-
lated group overlap integrals, i. e., λe

x/Sdpe ≈ λs
x/Sds

(where x = a and b) within the same irreducible repre-
sentation eg.

Applying the perturbation Hamiltonian (1) to the
ground and excited states (2) and (3), the improved
perturbation formulas of the EPR parameters for a 3d9

ion under tetragonally elongated octahedra are estab-
lished from the one-electron wave functions (4). Thus,
we have

g‖ = gs + ∆g‖CF + ∆g‖CT,

∆g‖CF = 8kCF
′ζCF

′/E1 + kCFζCF
′2/E2

2

+4kCF
′ζCFζCF

′/(E1E2)

+gsζCF
′2[1/E1

2 −1/(2E2
2)]

−kCFζCFζCF
′2(4/E1 −1/E2)/E2

2

−2kCF
′ζCFζCF

′2[2/(E1E2)−1/E2
2]/E1

−gsζCFζCF
′2[1/(E1E2

2)−1/(2E2
3)],

∆g‖CT = 8kCT
′ζCT

′/ECT1,

g⊥ = gs + ∆g⊥CF + ∆g⊥CT,

∆g⊥CF = 2kCF
′ζCF

′/E2 −4kCFζCF
′2/(E1E2)

+kCF
′ζCFζCF

′(2/E1 −1/E2)/E2

+2gsζCF
′2/E1

2

+ζCFζCF
′(kCFζCF

′ − kCF
′ζCF)/(E1E2

2)

−ζCFζCF
′(1/E2 −2/E1)(2kCFζCF

′/E1

+kCF
′ζCF/E2)/(2E2)

−gsζCFζCF
′2[1/E1

2 −1/(E1E2)

+1/E2
2]/(2E2),

∆g⊥CT = 2kCT
′ζCT

′/ECT2,

A‖ = A‖CF + A‖CT,

A‖CF = −κP0 −4PCF/7 + PCF
′[8kCF

′ζCF
′/E1

+6kCF
′ζCF

′/(7E2)−3kCFζCF
′2/(7E2

2)

−40kCF
′ζCFζCF

′/(7E1E2)+ κζCF
′2/E2

2],

A‖CT = PCT[8kCT
′ζCT

′/ECT1 +6kCT
′ζCT

′/(7ECT2)],

A⊥ = A⊥CF + A⊥CT,

A⊥CF = −κP0 + 2PCF/7 + PCF
′[11kCF

′ζCF
′/(7E2)

+9kCF
′ζCFζCF

′/(14E2
2)−4ζCF

′2/(7E1
2)

+11kCF
′ζCFζCF

′/(7E1E2)

+κζCF
′2[2/E1

2 + 1/(2E1
2)],

A⊥CT = 11PCT
′kCT

′ζCT
′/(7ECT2). (8)

Here gs = 2.0023 is the spin-only value. E1 and E2 are
the CF energy separations between the excited 2B2g
and 2Eg and ground 2B1g states: E1 = 10 Dq and
E2 = 10 Dq + 5 Ds−3 Dt. Here Dq is the cubic field
parameter, and Ds and Dt are the tetragonal ones. ECT1
and ECT2 are the energy differences between the CT
excited 2B2g

b and 2Eg
b and ground 2B1g states. κ is the

core polarization constant. In (8), the spin-orbit cou-
pling coefficients and the orbital reduction factors of
the CF mechanism are

ζCF = (Nt
a)2[ζd

0 +(λt
a)2ζp

0/2],

ζCF
′ = Nt

aNe
a[ζd

0 −λt
aλe

aζp
0/2],

kCF = (Nt
a)2[1 +(λt

a)2/2],
kCF

′ = Nt
aNe

a[1 + λt
aλe

a/2],
PCF = (Nt

a)2P0,

PCF
′ = Nt

aNe
aP0, (9)
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and those of the CT mechanism are

ζCT
′ = Nt

aNe
b{[λt

a −Sdp(e2g)]ζd
0 + λt

aζp
0/2},

kCT
′ = Nt

aNe
b{λe

a + λt
a/2 + λt

aSdp(t2g)Sdp(eg)
−λt

aλe
aSdp(t2g)}

PCT = (Nt
b)2P0,

PCT
′ = Nt

bNe
bP0. (10)

Here ζd
0 and ζp

0 are the spin-orbit coupling coeffi-
cients of the free 3d9 and ligand ions, respectively. P0
is the dipolar hyperfine structure parameter of the free
3d9 ion.

2.2. Calculations for K2PdX4:Cu2+

Now the above formulas are applied to
K2PdX4:Cu2+. For the square planar [CuX4

2−]
clusters, the tetragonal field parameters can be deter-
mined from the superposition model [25] and the local
geometrical relationship of the systems:

Ds = −(4/7)Ā2(R)(R/R⊥)t2

Dt = −(8/21)Ā4(R)(R/R⊥)t4 ,
(11)

Here Ā2(R) and Ā4(R) are the intrinsic parameters. R⊥
denotes the planar bond length. R is the reference dis-
tance (or the metal-ligand bond length), and R = R⊥
for the studied square planar clusters here. For octahe-
dral 3dn clusters, the relationships Ā4(R) ≈ (3/4) Dq
and Ā2(R) ≈ 10.8 Ā4(R) have been proved to be valid
in many crystals [25 – 27] and reasonably applied here.

For K2PdX4:Cu2+, the cubic field parameters
Dq≈ 1250 cm−1 and 1150 cm−1 for X = Cl and Br
can be obtained from the spectral parameters for Cu2+

in halides [28]. From [29], the average covalency fac-
tor N (≈ 0.765) is acquired for Cu2+ in SrLaAlO4.
Considering that the covalency of Cu2+-X− bonds in
K2PdX4:Cu2+ should be stronger than that of Cu2+-
O2− bonds in SrLaAlO4:Cu2+, one can approximately
acquire N ≈ 0.695 and 0.638 for X = Cl and Br, re-
spectively, in the studied systems. From the Cu2+-X−
distances R (≈ 2.265 Å and 2.42 Å [18, 22, 23] for
K2PdCl4 and K2PdBr4, respectively), the related group
overlap integrals are calculated from the Slater-type
self-consistent field (SCF) wave functions [30, 31]. Us-
ing (8) – (9) and the related free-ion values (i. e., ζd

0 ≈
829 cm−1 [32] and P0 ≈ 416 ·10−4 cm−1 [33] for Cu2+

and ζp
0 ≈ 587 cm−1 and 2460 cm−1 [34] for Cl− and

Table 1. The group overlap integrals (and also the integral
A), the spin-orbit coupling coefficients (in cm−1), the or-
bital reduction factors and the dipolar hyperfine structure
parameters (in 10−4 cm−1) of CF and CT mechanisms for
K2PdX4:Cu2+ (X = Cl and Br).

X Sdpt Sdpe Sds A ζCF ζCF
′ kCF

′

Cl 0.0132 0.0377 0.0255 1.418 672 507 0.856
Br 0.0115 0.0346 0.0231 1.524 984 135 0.826
X kCF

′ PCF PCF
′ ζCT

′ kCT PCT PCT
′

Cl 0.480 292 295 650 0.431 268 287
Br 0.388 267 270 932 0.440 292 310

Table 2. The g-shifts ∆gi(= gi − gs, where i = ‖ or ⊥)
and the hyperfine structure constants Ai (in 10−4 cm−1) for
K2PdX4:Cu2+.

Hosts ∆g‖ ∆g⊥ A‖ A⊥
K2PdCl4 Cal.a 0.2279 0.0454 −160.5 −35.0

Cal.b 0.1814 0.026 −193.4 −39.9
Cal.c 0.2321 0.044 −170.2 −34.2
Expt. [13] 0.2303(2) 0.047(2) −163.6(5) −34.5(6)

K2PdBr4 Cal.a 0.1411 0.0464 −175.4 −46.6
Cal.b 0.037 0.005 −251.1 −55.3
Cal.c 0.144 0.038 −196.8 −45.4
Expt. [14] 0.141(3) 0.041(2) −189.5 −45.8

a Calculations based on the complicated perturbation formulas and
various adjustable MO coefficients in the previous work [18]. b Cal-
culations based on only the CF contributions in this work. c Calcula-
tions based on both the CF and CT contributions in this work.

Br−), the spin-orbit coupling coefficients, the orbital
reduction factors and the dipolar hyperfine structure
parameters can be determined for both the CF and
CT mechanisms. All these values are shown in Ta-
ble 1. The core polarization constants in the formu-
las of the hyperfine structure constants are taken as
κ ≈ 0.3 [32, 35], the expectation value for Cu2+ in
tutton salts. The CT energy levels ECT1 and ECT2 are
about 38000 cm−1 and 35000 cm−1 [36] for K2PdCl4,
and 30500 cm−1 and 27500 cm−1 [18] for K2PdBr4,
respectively. Substituting these values into (8), the the-
oretical EPR parameters (Cal. c) are calculated and
listed in Table 2. For comparisons, the results (Cal. a)
of the previous works [16] and those (Cal. b) including
only the CF contributions (i. e., all the CT terms vanish
in (8)) are also collected in Table 2.

2.3. Validity and Applicability of Present Theoretical
Treatments

In order to clarify the validity of the theoretical
model and formulas established in this work, the ad-
vantages of adopting only one adjustable parameter
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Table 3. The g-shifts ∆gi and the hyperfine structure con-
stants Ai (in 10−4 cm−1) in terms of the respective contri-
butions for various tetragonally elongated octahedral Cu2+

centers.

RbCaF3:Ni+ SrCl2:Cu2+ MgO:Cu2+ NaCl:Cu2+

∆g‖ Cal.a 0.6153 0.1957 0.3418 0.3302
Cal.b 0.6642 0.2368 0.3829 0.3731
Expt. [37] 0.6607 0.2340(20) 0.3817 0.3707

∆g⊥ Cal.a 0.1004 0.0270 0.0773 0.0548
Cal.b 0.1128 0.0393 0.0942 0.0685
Expt. [38] 0.1117 0.0381(20) 0.0937 0.0677

A‖ Cal.a −84.1 −177.3 −176.0 −116.2
Cal.b −79.4 −160.2 −163.1 −107.4
Expt. [39] −77.8(17) −157.8(10) – −105.9

A⊥ Cal.a −35.9 −47.8 −43.7 −44.3
Cal.b −33.8 −42.6 −40.2 −40.1
Expt. [40] −31.2(17) −40.0(60) – −38.9

a Calculations based on only the CF contributions in this work. b Cal-
culations based on both the CF and CT contributions in this work.

(i. e., the average covalency factor N) over the previous
work [18] may be analyzed here. Firstly, reduction in
the number of adjustable parameters in present work
is achieved by establishing the relationships among
the related MO coefficients (e. g., Nγ

x and λγ
x) based

on the cluster approach (see (5) – (7)). Secondly, the
tetragonal field parameters are determined from the lo-
cal structures of the systems based on the superposi-
tion model, and their influence on the EPR parame-
ters is also explicitly indicated in the CF energy de-
nominators E1 and E2. On the contrary, various MO
coefficients (e. g., α0, α1, α2, and µ) were taken as
adjustable parameters, and the tetragonal distortions
(local structures) of the impurity centers were not in-
cluded in the previous treatments [18].

The general applicability of the above formulas
can be further checked by analyzing some other
tetragonally elongated 3d9 centers. The following sys-
tems are studied: similar square planar [NiF4]3− clus-
ter (center III) in RbCaF3:Ni+ and [CuCl4]2− clus-
ter in SrCl2:Cu2+, and normal elongated octahedral
[CuO6]10− and [CuCl6]4− clusters (induced by the
Jahn-Teller effect) in MgO:Cu2+ and NaCl:Cu2+. The
calculated results in terms of merely CF (Cal. a) and
both CF and CT contributions (Cal. b) are compared
with the experimental data [37 – 40] in Table 3.

3. Discussion

Table 2 reveals that the theoretical results (Cal. c)
of the EPR parameters based on both the CF and CT
contributions in this work show reasonable agreement

with the observed values, and are also comparable with
those (Cal. a) of the previous studies [18]. This means
that the present investigations based on only one ad-
justable parameter seem applicable to the studies of
EPR spectra for 3d9 ions in elongated octahedra with
significant covalency and CT contributions.

1) The contributions to the g-shifts ∆gi (= gi − gs,
where i = ‖ or ⊥) from the CT mechanism are the
same in sign and about 28% (for i = ‖) and 69% (for
i =⊥) larger in magnitude than those from the corre-
sponding CF ones for K2PdCl4. For the ligand Br, the
above contributions rapidly increase to almost 4 and
8 times those of the respective CF terms. This can be
ascribed to the much larger ζp

0 (≈ 2460 cm−1 [34])
and lower CT energy levels for [CuBr4]2− cluster than
that for [CuCl4]2− cluster [18, 36]. The importance of
the CT contributions for the hyperfine structure con-
stants is less significant than that for the g factors due
to the large isotropic part characterized by the core po-
larization constant. Interestingly, the ratios of the CT
contributions related to the corresponding CF ones ob-
tained in this work are comparable with those in the
previous studies [18] based on various adjustable pa-
rameters (e. g., four independent MO coefficients) and
can be regarded as reasonable.

2) The large anisotropies (g‖ −g⊥ and A‖ −A⊥) of
the EPR parameters depend mainly upon the tetrago-
nal distortions of the square planar [CuX4]2− clusters.
This structure can be regarded as a limit for an elon-
gated octahedron (i. e., two axial ligands are removed
to infinite), which may result in significant tetragonal
distortions and hence the large anisotropies of the EPR
parameters for the studied systems. Thus, the local
structures of the impurity centers are connected with
the studies of the EPR spectra.

3) From Table 3, one can find that the calculated
results based on the theoretical model and formulas
(including both the CF and CT contributions) in this
work also show reasonable agreement with the exper-
imental data for various tetragonally elongated octa-
hedral 3d9 clusters [37 – 40]. The contributions from
the CT mechanism are less important for RbCaF3:Ni+

and MgO:Cu2+ due to the weaker covalency and lig-
and spin-orbit coupling interactions. In addition, for
similar Cu2+-Cl− combinations in SrCl2:Cu2+ (or
NaCl:Cu2+), the influence of the CT mechanism is less
significant than that in the above K2PdCl4:Cu2+. Since
the impurity-ligand distance R(≈ 2.467 Å or 2.81 Å)
for SrCl2:Cu2+ or NaCl:Cu2+ is much larger than that
(≈ 2.265 Å) for K2PdCl4:Cu2+, the weaker covalency
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(or less intense impurity-ligand orbital admixtures) and
hence relatively smaller CT contributions can be ex-
pected in the former. Therefore, the above formulas in
this work are applicable not only to square planar 3d9

centers but also to normal tetragonally elongated octa-
hedral ones.

4. Conclusion

The EPR parameters for K2PdX4:Cu2+ are theo-
retically investigated from the perturbation formals of
these parameters for a tetragonally elongated octahe-

dral 3d9 cluster including both the CF and CT con-
tributions. By applying the cluster approach, the re-
lated MO coefficients are determined in a uniform way,
and the tetragonal field parameters are obtained from
the superposition model and the local structures of the
systems. Finally, the experimental EPR parameters are
reasonably interpreted from only one adjustable pa-
rameter.
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