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The Kadomtsev-Petviashili (KP) equation is derived for weakly nonlinear ion acoustic waves in
a magnetized dusty plasma in the presence of nonthermal electrons. Soliton solutions are obtained
in both the one-dimensional and two-dimensional framework. For the one-dimensional soliton so-
lution the ‘tanh’ method is considered while the two-dimensional solution is obtained by a method
introduced by S. V. Manacov et al., Phys. Lett. A 63, 205 (1977). It is found that in case of the one-
dimensional solution, both compressive and rarefactive solitary waves exist which could be obtained
depending on the ratio of the electron and ion density. It is also seen that the nonthermal distribution
of electrons has some significant effect in the shape of both the one-dimensional and two-dimensional
solitary wave.
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1. Introduction

Plasmas and dust are ubiquitous in the universe.
Dust has importance in space plasma, astrophysi-
cal plasmas, laboratory plasmas and the environ-
ment. The presence of a dusty plasma in cometary
tails, asteroid zones, planetary rings, interstellar
medium, earth’s ionosphere and magnetosphere makes
this subject increasingly important [1 – 7]. It also
plays vital roles in other fields like low-temperature
physics, radio frequency plasma discharge [8], coat-
ing and etching of thin films [9], plasma crystals
[10, 11].

The waves in dusty plasmas were studied in differ-
ent modes like the dust acoustic (DA) mode [12, 13],
dust ion acoustic (DIA) mode [14, 15] dust Berstain-
Greene-Kruskal (DBGK) mode [16], dust lattice
(DL) mode [17], Shukla-Varma mode [18], dust-drift
mode [19] by many investigators. Dust acoustic waves
(DAW) and dust ion acoustic waves (DIAW) were
also observed experimentally [20, 21]. Recently elec-
tromagnetic modes and electrostatic modes in magne-
tized dusty plasm were studied [22, 25]. Also a num-
ber of theoretical studies on DIA soliton [26, 27], DA
soliton [28, 29] and DL soliton [30] were done with
low-frequency dust-associated electrostatic and elec-
tromagnetic waves.
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Recently several authors studied solitary waves in
a plasma considering a non-thermal distribution for
the electrons applied in space and astrophysical plas-
mas. Cairns et al. [31] used a nonthermal distribu-
tion of electrons to study the ion acoustic solitary
structures observed by the FREJA satellite. Singh and
Lakhina [32] studied the effect of a nonthermal elec-
tron distribution on nonlinear electron acoustic waves
in an unmagnetized three-component plasma consist-
ing of nonthermal electrons, cold electrons and ions.
They have shown that the inclusion of nonthermal
electrons will change the properties as well as the
regime of existence of solitons. Sahu and Roychoud-
hury [33] studied the relativistic effects on electron
acoustic solitary waves (EASW) in an unmagnetized
three-component plasma consisting of nonthermal hot
electrons, cold relavistic electrons and relativistic ions.
They have shown also the role of α (the nonther-
mal parameter) on the formation of EASW. Mendoza-
Briceno et al. [34] considered a hot nonthermal dusty
plasma, consisting of fast ions and negatively charged
hot dust grains to study arbitrary amplitude DA soli-
tary waves. To study DA solitary waves and dou-
ble layers El-Labany and El-Taibany [35] also con-
sidered nonthermally distributed electrons. The mag-
netic field was taken along the z-axis. Recently Choi et
al. [36] have studied the nonlinear ion acoustic soli-
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tary wave in a magnetized dusty plasma, propagat-
ing obliquely to an external magnetic field. Using the
Sagdeev pseudopotential technique they found com-
pressive and rarefactive ion acoustic solitary waves as
well as kink-type double layer, in addition to conven-
tional hump-type solitary waves. Using the reductive
perturbation technique (RPT) Mamun and Shukla [37]
have studied linear and nonlinear dusty hydromagnetic
waves in a magnetized dust-ion plasma in the frame-
work of the Korteweg de-Vries (KdV) equation. How-
ever in most of the earlier mentioned works, nonlin-
ear waves were studied in an one-dimensional geom-
etry. Recently, Duan [38] studied dust acoustic waves
in an unmagnetized plasma in two dimensional geom-
etry in the framework of the Kadomtsev-Petviashvili
(KP) equation. He compared his results with those ob-
tained by Mamun and Shukla [39] in case of a magne-
tized dusty plasma and concluded that the magnetized
dusty plasma and the unmagnetized dusty plasma are
different mainly in two-dimensional long wavelength
perturbations.

In the present paper we derive the KP equation
for weakly nonlinear ion acoustic waves in a three-
component dusty plasma subjected to an external mag-
netic field. In our model the plasma consists of ions,
negatively charged, massive dust grains, and nonther-
mally distributed electrons. The dust dynamics is not
taken into account and the charges of the dust grains
are assumed to be constant.

The organization of the paper is as follows. In Sec-
tion 2 basic equations are written. The KP equation is
derived in Section 3. Solutions for the KP equation, re-
sults and a discussion are given in Section 4, and Sec-
tion 5 is kept for conclusions.

2. Basic Equations

The basic equations are as follows:

∂ni

∂t
+ ·(nivi) = 0, (1)

∂vi

∂t
+(vi· )vi = −e φ

mi
+

eB0

mic
vi × ez, (2)

2φ = −4π [−ene + eni− ezdnd], (3)

where ne, ni, and nd are the densities of electrons,
ions and dust, respectively, vi and mi are the veloc-
ity and mass of ions, and φ is the plasma potential.
zd is the dust charge number, so that the charge of the

dust is given by qd = −ezd, where e is the elementary
charge. As electrons are assumed to be nonthermally
distributed, to model the electron distribution with a
population of fast particles, we choose the distribution
function after Cairns et al. [31]

f0h(v) =
n0h

(
1 + αv4

v4
th

)
√

2πv2
th(1 + 3α)

e
− v2

2v2
th ,

where n0h is the hot electron density, vth is the thermal
speed of the hot electrons, and α is a parameter that de-
termines the population of energetic nonthermal elec-
trons. α essentially measures the deviation of f0h(v)
given in the above equation from the Maxwellian case.

The density of electrons is given by

ne = ne0

[
(1−β1φ + β1φ2)exp

(
eφ
Te

)]
. (4)

We assume that the wave is propagating in the xz-
plane. After normalization the system reduces to

∂n
∂t

+
∂(nvx)

∂x
+

∂(nvz)
∂z

= 0, (5)

∂vx

∂t
+
(

vx
∂
∂x

+ vz
∂
∂z

)
vx = −∂φ

∂x
+ vy, (6)

∂vy

∂t
+
(

vx
∂
∂x

+ vz
∂
∂z

)
vy = −vx, (7)

∂vz

∂t
+
(

vx
∂
∂x

+ vz
∂
∂z

)
vz = −∂φ

∂z
, (8)

(
∂2

∂x2 +
∂2

∂z2

)
φ = β [(1−β1φ +β1φ2)eφ −δ1n+δ2],

(9)

where β =
r2
g

λ 2
e

, δ1 = ni0
ne0

, δ2 = ndzd
ne0

, and rg = Cs
Ω is

the ion gyroradius, and λe =
(

Te
4πne0e2

)1/2
is the elec-

tron Debye length. The normalizations are as fol-
lows: Ω t → t, (Cs/Ω) → , vi/Cs → v, ni/ni0 → n,
eφ/Te → φ , where Cs = (Te/mi)1/2 is the ion acous-
tic velocity, Ω = eB0

mic
is the ion gyrofrequency. ne0,ni0

are the electron and ion densities, respectively, in the
unperturbed state. To obtain the dispersion relation for
low-frequency waves we write the dependent variables
as a sum of equilibrium and perturbed parts. Writing
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n = 1+ n̄, vx = v̄x, vz = v̄z, vy = v̄y, φ = φ̄ , (5) – (9) can
be written as

∂n̄
∂t

+
∂v̄x

∂x
+

∂v̄z

∂z
= 0, (10)

∂v̄x

∂t
= −∂φ̄

∂x
+ v̄y, (11)

∂v̄y

∂t
= −v̄x, (12)

∂v̄z

∂t
= −∂φ

∂z
, (13)

(
∂2

∂x2 +
∂2

∂z2

)
φ̄ = β [β2φ̄ − δ1n̄], (14)

where β2 = (1−β1). We assume that the perturbation
is of the form ei(kxx+kzz−ωt), where kx and kz are the
wave numbers in x and z directions, respectively, and
ω is the ion acoustic wave frequency (ω � Ω ) ob-
tained as

ω = kz

[
β2

δ1
+
(

1 +
1

β δ1

)
k2

x +
(

1 +
1

β δ1

)
k2

z

]−1/2

.

(15)

3. The KP Equation

To obtain the KP equation we use the reductive per-
turbation technique. The stretching of the independent
variables is as follows [38]:

X = ε2x, (16)

ξ = ε(z−Vt), (17)

τ = ε3t, (18)

where V is the phase velocity of the ion acoustic wave,
and ε is a small parameter measuring the strength of
the nonlinearity. The dependent variables are expanded
as

n = 1 + ε2n1 + ε4n2 + . . . , (19)

vx = ε3vx1 + ε5vx2 + . . . , (20)

vy = ε3vy1 + ε5vy2 + . . . , (21)

vz = ε2vz1 + ε4vz2 + . . . , (22)

φ = ε2φ1 + ε4φ2 + . . . . (23)

Substituting the expansions in (5) – (9) and equating
the coefficients of different powers of ε , we get

n1 =
1
V

vz1, (24)

φ1 =
δ1

1−β1
n1, (25)

vy1 = 0 = vy2, (26)

vx1 = 0 = vx2, (27)

∂vy1

∂ξ
= 0, (28)

V
∂vx1
∂ξ

=
∂φ1

∂X
, (29)

vz1 =
1
V

φ1, (30)

∂n1

∂τ
−V

∂n2

∂ξ
+

∂vx1

∂X
+

∂vz2

∂ξ
+

∂(n1vz1)
∂ξ

= 0, (31)

∂vz1

∂τ
−V

∂vz2

∂ξ
+ vz1

∂vz1

∂ξ
= −∂φ2

∂ξ
, (32)

∂vx1

∂τ
−V

∂vx2

∂ξ
+ vz1

∂vx1

∂ξ
= −∂φ2

∂X
, (33)

∂2φ1

∂ξ 2 = β [−β1φ2 + φ2 + φ2
1 /2− δ1n2]. (34)

From (24), (25) and (30), we get

V 2 =
δ1

1−β1
. (35)

From the relations (24) – (34), we obtain the KP equa-
tion as

∂
[

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ B∂3

φ1

∂ξ 3

]
∂ξ

+C
∂2φ1

∂X2 = 0, (36)

where

A =
−V 2 + 3−3β1

2V (1−β1)
, B =

V
2β (1−β1)

, C =
V
2

. (37)

4. Results and Discussion

4.1. Traditional Solution by the ‘tanh’ Method

To get a travelling solitary wave solution let us
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define the variable

χ = α(lξ + mX −Uτ),

where l and m are the direction cosines of the an-
gles made by the wave propagation with the z-axis
and x-axis, respectively, U is the velocity of the wave,
and α is a constant. Considering ψ(X) = φ1(ξ ,X ,τ),
(36) reduces to

Bα2l4 d2ψ
dχ2 +(Cm2 − lU)ψ +

Al2ψ2

2
= 0. (38)

Now substituting Y = tanh(χ), (38) transforms to

Bα2l4(1−Y2)2 d2s
dY 2 −2Bα2l4Y (1−Y2)

dS
dY

+(Cm2 − lU)S +
Al2

2
S2 = 0,

(39)

where S(Y ) = ψ(χ).
Now (39) can be solved by using the so-called ‘tanh’

method. The solitary wave solution of (39) is given by

S(Y ) = S0sech2
(

χ ′

α1

)
, (40)

where χ ′ = lξ + mX −Uτ , S0 = 12Bα2l2

A is the ampli-

tude of the solitary waves, and α1 = 2
(

Bl4

lU−Cm2

)1/2

is the width of the solitary waves. Putting the val-
ues of B and A in the expression of S0 we get S0 =

12V 2α2l2

β (−V2+3−3β1)
.

It is seen from the expression of S0 that, if V 2 >
3 − 3β1, the value of S0 is negative, and hence the
solitary wave is rarefactive. Again if V 2 < 3 − 3β1,
then the value of S0 is positive, and so the solitary
wave corresponds to a compressive solitary wave. If
V 2 = 3 − 3β1, the value of S0 is infinite, and so no
soliton solution exists. Similarly, putting the values
of B and C in the expression of α1, we get α1 =

2


 l4

√
δ1

2β (1−β1)
[

lU
(√

1−β1

)
−m2√δ1

2

]



1/2

. It is seen from

the expression of α1 that, if β1 > 1, then the width
of the solitary wave will become complex, and so
β1 should always be less than 1.

From the expressions of S0 and α1 it is seen, that the
amplitude and width of the solitary wave depend on β1,
the nonthermal parameter, on l, the direction cosines

S

Fig. 1. Plot of S(Y ) vs. χ ′ for different values of β1, viz.
β1 = 0 (solid line), 0.001 (dotted line), 0.1 (dashed line). The
other parameters are δ1 = 1.5, α = 0.5, β = 1.

V

Fig. 2. Plot of V , the soliton velocity, vs. β1. The other pa-
rameters are the same as in Figure 1.

of the angles made by the wave propagation with the
z-axis, on δ1, the ratio of the initial electron density
to the initial ion density, and on the angle of the wave
propagation to the direction of the magnetic field. In
spite of nonthermal distribution of electrons and the
magnetic field both play important roles in describing
the behaviour of nonlinear waves. For v2 = 3− 3β1,
S0 is infinite and, hence, the soliton solution ceases
to exist. Then one can obtain a modified KP equa-
tion whose solution has been discussed in some detail
in [40] for a simplified model.

To see the effect of β1 on the speed and shape
of the solitary wave Fig. 1 is drawn. S is plot-
ted vs. χ ′ for different values of β1, viz. β1 =
0 (solid line), 0.001 (dotted line), 0.1 (dashed line).
The other parameters are δ1 = 1.5, α = 0.5, β =
1. From the figure it is seen that β1 has a signifi-
cant effect on the width and amplitude of the solitary
waves.
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Fig. 3. (a) S0 plotted against l. The other parameters are α =
0.5, β = 1, β1 = 0.1, and δ1 = 1.5. (b) S0 plotted against β1.
l = 0.4 and the other parameters are the same as in Figure 3a.
(c) S0 plotted against δ1. β1 = 0.751, l = 0.4 and the other
parameters are the same as in Figure 3a.

Figure 2 shows the the plot of V , the soli-
ton velocity, vs. β1. The other parameters are the
same as those in Figure 1. From the figure it is
seen that the nonthermal distribution of electrons
has a significant effect on the speed of the solitary
wave.

To see the effect of l, β1 and δ1 on the amplitude
of the solitary waves Figs. 3a, b and c are drawn. In

Fig. 4. (a) α1 plotted against l. The other parameters are
U = 1, β = 1, β1 = 0.1, and δ1 = 1.5. (b) α1 plotted
against β1. The other parameters are U = 1, β = 1, l = 0.4,
and δ1 = 1.5. (c) α plotted against δ . The other parameters
are U = 1, β = 1, l = 0.4, β1 = 0.1.

Fig. 3a S0 is plotted against l, the other parameters
are α = 0.5, β = 1, β1 = 0.1, and δ1 = 1.5. From
this figure it is seen that the amplitude of the soli-
tary wave increases with the increase of β1. In Fig. 3b
S0 is plotted against β1 for l = 0.4. The other pa-
rameters are the same as those in Fig. 3a. Here also
S0 increases as β1 increases. In Fig. 3c S0 is plot-
ted against δ1 for β1 = 0.751 and l = 0.4. The other
parameters are the same as those in Figure 3a. Here
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it is seen that S0 also increases with the increase
of δ1.

From Figs. 3a – c it is seen that l, β1 and δ1 have sig-
nificant effects on the amplitude of the solitary waves.

To show the effect of l, β1 and δ1 on the width of the
solitary waves Figs. 4a, b and c are drawn. In Fig. 4a
α1 is plotted against l. The other parameters are U = 1,
β = 1, β1 = 0.1, and δ1 = 1.5. From this figure it is
seen that the width of the solitary waves increases as
l increases. In Fig. 4b α1 is plotted against β1, the other
parameters are U = 1, β = 1, l = 0.4, and δ1 = 1.5.
Here it is seen that α1 decreases with the increase of β1.
In Fig. 4c α1 is plotted against δ1, the other parameters
are U = 1, β = 1, l = 0.4, β1 = 0.1 and δ1 = 1.5. From
this figure it is seen that the width of the solitary waves
increases as δ1 increases.

From Figs. 4a – c it is seen that l, β1 and δ1 have
significant effects on the width of the solitary waves.

4.2. New Two-Dimensional Soliton

To obtain the two-dimensional soliton solution we
follow the method by Manacov et al. [41]. We trans-
form the variables as follows:

φ1 =
2V1

A
f (ζ ,ρ), (41)

where V1 �V and ρ =
V1√
BC

X , (42)

ζ =

√
V1

B
(ξ −V1τ). (43)

Using the transformations given by (41) – (43), (36) re-
duces to

∂2 f 2

∂ζ 2 =
∂2 f
∂ζ 2 − ∂2 f

∂ρ2 −
∂4 f
∂ζ 4 . (44)

Equation (44) is very similar to the one obtained
by Petviashvili [42]. Exploiting the result obtained
in [41], we obtain a two-dimensional soliton solutoin
of (44) given by

f = 12(3−ρ2− ζ 2)(3−ρ2 + ζ 2)−2. (45)

Figure 5 shows the two-dimensional soliton solution
of f vs. the scaled variables ρ and ζ where −15 < ρ <
15 and −6 < ζ < 6.

f

Fig. 5. Two-dimensional soliton solution of f plotted against
the scaled variables ρ and ζ .

5. Conclusions

We have investigated nonlinear ion acoustic waves
in a magnetized dusty plasma in the presence of non-
thermal electrons. Using the RPT the KP equation was
derived. Both one- and two-dimensional soliton solu-
tions were studied. The one-dimensional soliton solu-
tion was obtained using the tanh method and the two-
dimensional soliton solution was obtained using the
technique derived in [41]. From the one-dimensional
soliton solution, it was shown that the amplitude and
width of the soliton solution depends on β1, δ1, l. It
was also shown that there exist conditions V 2 ><=
3 − 3β1 on which the one-dimensional soliton solu-
tion exists or not. The effect of all these parameters
on the amplitude and width of the solitary waves were
discussed extensively. It was seen that in case of the
one-dimensional soliton, if ni0/ne0, the ratio of equlib-
rium ion and electron density, and β1 satisfy the re-
lation v2 > 3 − 3β1, then the soliton is stable. The
two-dimensional solution was also obtained in [41]. It
was also seen that a nonthermal distribution of elec-
tron has also a significant effect on solitary waves in
plasmas.
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