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This paper analysis spatial asymptotic waves propagation in nonuniform optical fiber. It finds an ap-
propriate transformation such that the nonlinear variable-coefficient Schrödinger equation transform
into the nonlinear Schrödinger equation with varying gain/loss and frequency chirping. It obtains
solitonlike and periodic self-similar asymptotic waves by using the transformation. We analyze the
evolution properties of some novel self-similar solutions. In addition, the nature of our self-similar
asymptotic wave hints to the possibility of designing optical amplifier and focusing of spatial waves
to overcome inevitable energy losses while performing in the optical nonlinear media.
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1. Introduction

It is one of the focuses of the optical fibers in the
world in recent years to produce and transmit the chirp
pulse with high power. A self-similar pulse [1, 2], gen-
erated in a dispersion decreasing optical fiber or fiber
amplifier with normal group-velocity dispersion, has
become a topic of growing interest owing to its at-
tractive characteristics, such as resistance to optical
wave breaking, self-similarity in shape, and enhanced
chirp linearity. Moreover, its linear chirp facilitates ef-
ficient temporal compression. These attractive features
lead the self-similar pulse to a wide-range of practi-
cal significance. The self-similar pulse has obtained
the extensive concern of the foreign counterpart in re-
cent years and has important application prospect in
many fields of physics, such as fiber optic communi-
cation, nonlinear optics, ultrafast optics and transient
optics, etc. Up till now, optical researchers have car-
ried on several theoretical analyses, numerical simula-
tions and experiments to the self-similar pulse and have
made a lot of valuable achievements. Among them, the
experiments main research the distributing longitudi-
nal of gain parameter of optical fiber, stimulated Ra-
man effect, the properties of the self-similar pulse pro-
duced by dispersion decreasing fiber and Bragg grating
etc. From the analytical point of view, with the aid of
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the numerical simulation, they investigate the propaga-
tion properties including amplitude, phase, chirp fac-
tor and pulse width of optical self-similar pulses for
the nonlinear Schrödinger equation with normal group-
velocity dispersion. Need to prove, the contents of that
study are all carried on under ideal conditions.

In terms of physics, we have supposed that the
optical fiber is uniform and the systematic parame-
ters at this moment, such as group-velocity disper-
sion, nonlinear Kerr effect, third-order dispersion, self-
steepening and self-frequency shift are all constants
in the whole optical fiber. From the mathematics, the
nonlinear Schrödinger equation and high-order non-
linear Schrödinger equation that we study are all or-
dinary differential equations. In fact, under such ideal
conditions, the transmission properties of the optical
soliton in the single-mode optical fiber have already
been widely studied. Authors have studied different
types of Schrödinger equations and discuss the trans-
mission properties of the picosecond and femtosecond
pulses in the uniform optical fiber using different meth-
ods [3, 4], such as inverse scattering method [5, 6], Hi-
rota method [7], painleve property [8], Darboux trans-
formation [9, 10], ansatz method [11], etc. However, in
practical application, the core of the optical fiber is not
even. The distance among two adjoined atoms is not
constant in the whole optic fiber because of the chang-
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ing of lattice parameter of the fiber. And the geometric
form of the optic fiber changes because of fluctuations
of the core diameter of the fiber. The nonuniformity of
the optical fiber cause various effects, the optic fiber
gain/loss, group velocity dispersion and phase modu-
lation are not all constants [12 – 15]. At this moment,
the corresponding transmission model is a nonlinear
variable-coefficient Schrödinger equation:

I
∂Φ
∂z

+
η1(z)

2
∂2Φ
∂t2 +η2(z)|Φ|2Φ =−Iη3(z)Φ (1)

where t is the delay time, ηi(z), i = 1 . . .3 are group-
velocity dispersion, non linear Kerr effect, and optical
gain/loss, respectively, they are all functions of the nor-
malized distance z.

In recent years, the investigation for the trans-
mission properties of the nonlinear waves in such a
nonuniform medium causes great interests of people
gradually [16, 17]. In the literature, the nonlinear com-
pression of the chirped soliton without phase modula-
tion has already been discussed in detail. And, under
the integrability condition, the nonlinear Schrödinger
equation with constant gain/loss and frequency chirp-
ing has been reported, too. Another concept is the
control and management of soliton. And among them
what deserves to be mentioned is the dispersion man-
agement soliton. Dispersion management soliton will
become the scheme that fiber optic communication
system of future generation adopt most probably be-
cause of their superior performance [18]. Generally
speaking, the dispersion management is the technique
used in fiber optic system. It is designed to cope
with the periodic dispersion introduced by the opti-
cal fiber and offset the loss of the optical fiber, and
then the light pulse can be transmitted undistorted in
the optical fiber. In terms of mathematics, dispersion
management system can be described by a nonlinear
variable-coefficient Schrödinger equation or higher-
order nonlinear variable-coefficient Schrödinger equa-
tion. Therefore, it has certain difficulty to deal with
this problem in term of analyzing, a lot of research
work is completed through numerical calculation [19].
In recent years, average dispersion management soli-
ton is proposed [20]. In the dispersion management
system without loss, a average dispersion management
soliton system can be obtained by offsetting the fast
chirp. This system can be described by the nonlin-
ear Schrödinger equation with gain/loss and frequency
chirping. There are already several reports in this re-
spect recently [21, 22].

In the cases described above, the systems can be
described by the nonlinear Schrödinger equation with
gain/loss and frequency chirping. Therefore, it is very
meaningful to study this equation, and to seek new
explains in physical fields [23 – 27]. In addition, it is
also an important topic to study the nonlinear variable-
coefficient Schrödinger equation. There are also re-
ports in this respect in recent years. In a word, it is
very meaningful how to find new solutions and new
physical applications of these equation.

Equation (1) has a solution with chirped square
phase because of the nonuniformity of the optical fiber.
To provide an answer to this, let us scale (1) in the
forms:

Φ = p(z)q
√

η1α2

2α1η2
exp

(
I
M(z)t2

2

)
,

T = p(z)t = t exp
(
−

∫ z

0
η1(ζ )M(ζ )dζ

)
,

Z =
∫ z

0

η1(τ)p2(τ)
2α1

dτ ,

(2)

where M(z) is the chirp parameter, so that (1) be-
comes the nonlinear Schrödinger equation with vary-
ing gain/loss and frequency chirping:

I
∂q
∂Z

+α1
∂2q
∂T 2 +α2|q|2q−β1(Z)T 2q+Iβ2(Z)q=0, (3)

α1 and α2 are arbitrary constants, and

β1(Z) =
(M′

z + η1M2)α1

p4η1
,

and

β2(Z) = α1(η2η ′
1z p + 2η2η1 p′z −η1 pη ′

2z

+ η2
1 pη2M + 2η1 pη2η3)(p3η2

1 η2)−1

are the quadratic phase chirp coefficient and the
gain/loss coefficient, respectively. This equation also
describes the average dispersion management systems.
When the last two terms are omitted this propaga-
tion equation reduces to the normal form of nonlin-
ear Schrödinger equation (NLSE), which is integrable
(meaning it not only admits N-solitary wave solutions,
but the evolution of any initial condition is known in
principle). We call these N-solitary wave solutions N-
solitons, and mean by this that the solitary waves scat-
ter elastically and asymptotically preserve their shape
upon undergoing collisions, just like true solitons. In
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this paper, we reduce (1) to (3) and derive self-similar
asymptotic waves. However, for nonuniform pluses the
last two terms are nonnegligible and should be re-
tained. In general, the presence or absence of wave
solutions depends on the coefficients appearing in (3),
and therefore, on the specific nonlinear and dispersive
features of the medium. These self-similar asymptotic
waves are usually of great physical importance, be-
cause they may hint to the possibility of designing op-
tical amplifier and focusing of spatial waves to over-
come inevitable energy losses while performing in the
optical network.

2. Self-Similar Asymptotic Waves

In order to find some interesting solutions of (3), we
use the following ansatz:

q(Z,T ) = A(Z,T )expIφ(Z,T ),

φ(Z,T ) = B(Z)+Θ(Z)T + ϕ(Z)T 2.
(4)

Substituting (4) into (3), removing the exponential
term, and separating the real and imaginary parts, we
obtain

AZ + 2α1AT φT + β2A = −α1AφT T ,

−AφZ + α1AT T −β1T 2A + α2A3 = α1Aφ2
T .

(5)

Here, we are only interested in solutions that give
meaningful depictions of the variants β1(Z) and β2(Z):

β2(Z) = G(Z), β1(Z) = −G2(Z)
α1

− G′
Z(Z)
2α1

, (6)

where G(Z) is an arbitrary function. The symmetry
group analysis of (5) indicates that a self-similar wave
solution to this equation ought to be sought in the form:

A(Z,T ) = f (Z)W (Z,T ) = f (Z)W (ω)

= f (Z)W [ f 2(Z)g(Z)(T −h(Z))],
(7)

where

g(Z) = exp
(∫

2G(Z)dZ
)

. (8)

After some lengthy but straightforward algebra, we
have a set of first-order differential equations for the
width f (Z), the coefficient Θ(Z), and the beam cen-
ter h(Z). This set of equations is self-consistent only if

the chirp parameter ϕ(Z) obey the constraint about the
gain/loss coefficient β2(Z):

ϕ(z) =
β2(Z)
2α1

=
G(Z)
2α1

. (9)

The chirp function ωc(T ) = − ∂[ϕ(Z)T 2]
∂T = −G(Z)

α1
T .

This shows, there is a linear relation between chirp
function ωc of the self-similar pulse and the time T .
It relates to the dispersion and the gain/loss parame-
ters but have nothing to do with properties of incident
pulse. The set of first-order differential equations can
be readily solved to obtain the following expressions:

Θ(Z) = Θ0g−1(Z),

f (Z) = f0g−1(Z),

h(Z) = g(Z)
∫

[2α1Θ0g−2(Z)]dZ + h0g(Z),

(10)

where Θ0, f0 and h0 are initial values of the corre-
sponding parameters and g(z) is given by (8). Further-
more, the self-similar wave profile W (ω) and the phase
factor B(Z) are found to satisfy

B′
Z(Z) = α1[−Θ 2(Z)+ g2(Z)λ f 4(Z)], (11)

W ′′
ωω = λW − α2

f 2
0 α1

W 3, (12)

which coincides with the evolution of an enharmonic
oscillator with potential

U(W ) = −λ
2

W 2 +
α2

4 f 2
0 α1

W 4.

Now we proceed with the coupled amplitude-phase
formulation. Equation (12) thus becomes

W ′′
ωω =

d
dW

[
λ
2

W 2 − α2

4 f 2
0 α1

W 4 + P
]
.

Since

W ′′
ωω =

d
dW

[
1
2
(Wω)2

]
,

we can then write

dω =
[

λW 2 − α2

2 f 2
0 α1

W 4 + 2P
]−1/2

dW , (13)

where P is an arbitrary constant of integration, which
coincides with the energy of the enharmonic oscillator.
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Fig. 1. Evolution of a bright self-similar wave solution (14) in optical fiber with varying gain/loss and frequency chirping for
α1 = λ = f0 = Θ0 = 1, α2 = 2, G = −0.05, h0 = 0.

Integrating (13) for different values of P, we get the
amplitude function W (ω). It is very interesting to look
carefully at the above equation. It can be used to con-
struct many types of travelling wave solutions, which
include solitary wave solutions, trigonometric function

solutions, Jacobian elliptic function solutions, and ra-
tional solutions. It is very tedious to write all possible
solutions of (13). To avoid more complicated discus-
sion, we only restrict ourselves to several simple and
interesting cases.

Case 1. Taking P = 0, so from (13) follows that dω =
[
λW 2 − α2

2 f 2
0 α1

W 4
]−1/2

dW . We will discuss two

subclasses:
(i) For λ > 0, from (4) and (13) we have

q1(Z,T ) = ±
√

2α1λ
α2

f0 f (Z)sech
[
±
√

λ f 2(Z)g(Z)(T −h(Z))
]

exp[IB(Z)+ IΘ(Z)T + Iϕ(Z)T 2], (14)

q2(Z,T ) = ±
√
−2α1λ

α2
f0 f (Z)csch

[
±
√

λ f 2(Z)g(Z)(T −h(Z))
]

exp[IB(Z)+ IΘ(Z)T + Iϕ(Z)T 2], (15)

where λ is an arbitrary nonzero constant. Equation (14) is the well-known bright optical soliton solution,
while (15) is the soliton profile solution. Here the width and the position of the center of any bright self-similar
asymptotic wave are specified by (14) and phase function is given by (10) and (11).

(ii) For λ < 0, from (4) and (13) we have two singular triangular periodic solutions:

q3(Z,T ) = ±
√

2α1λ
α2

f0 f (Z)sec
[
±

√
−λ f 2(Z)g(Z)(T −h(Z))

]
exp[IB(Z)+ IΘ(Z)T + Iϕ(Z)T 2], (16)

q4(Z,T ) = ±
√

2α1λ
α2

f0 f (Z)csc
[
±

√
−λ f 2(Z)g(Z)(T −h(Z))

]
exp[IB(Z)+ IΘ(Z)T + Iϕ(Z)T 2], (17)

where λ is an arbitrary nonzero constant.

Case 2. Taking P �= 0, in this case there exist several possibilities depending on the values of the constant P.
For example, if P = f 2

0 λ 2α1/4α2, then the solution for q(Z,T ) reads

q5(Z,T ) = ±
√

α1λ
α2

f0 f (Z) tanh

[
±

√
−λ

2
f 2(Z)g(Z)(T −h(Z))

]
exp[IB(Z)+ IΘ(Z)T + Iϕ(Z)T 2], (18)
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Fig. 2. Evolution of two-solitonlike self-similar wave solution (14) in optical fiber with varying gain/loss and frequency
chirping for α1 = −0.25, α2 = h0 = −1, λ = 2, G(z) = −0.5coth(z), Θ0 = f0 = 5.
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Fig. 3. Evolution of a periodic self-similar wave solution (20) in optical fiber with varying gain/loss and frequency chirping
for α1 = G = −0.025, α2 = −0.2, λ = 4, Θ0 = f0 = 5, h0 = 0.

which represents the dark optical soliton for (3), and

q6(Z,T ) = ±
√
−α1λ

α2
f0 f (Z) tan

[
±

√
λ
2

f 2(Z)g(Z)(T −h(Z))

]
exp[IB(Z)+ IΘ(Z)T + Iϕ(Z)T 2], (19)

whereas if P = λ 2α1 f 2
0 m2/(m2 + 1)2α2, q(Z,T ) can be expressed as the following Jacobian elliptic function:

q7(Z,T )=±
√

2α1λ
α2(m2+1)

m f0 f (Z)sn

[
±

√
− λ

m2+1
f 2(Z)g(Z)(T −h(Z))

]
exp[IB(Z)+IΘ(Z)T+Iϕ(Z)T 2]. (20)

Finally, if P = λ 2α1 f 2
0 (m2 −1)2/4α2(m2 + 1)2, the solution for q(Z,T ) is the Jacobian elliptic function:

q8(Z,T )=±
√

λ α1(m2 −1)
α2(m2 + 1)2 f0 f (Z)

cn
[
±

√
2λ

m2+1 f 2(Z)g(Z)(T −h(Z))
]

1+sn
[
±

√
2λ

m2+1 f 2(Z)g(Z)(T−h(Z))
] exp[IB(Z)+IΘ(Z)T+Iϕ(Z)T 2]. (21)

where λ is an arbitrary nonzero constant and m is a modulus. Since cnξ → sechξ ,snξ → tanhξ as m ⇒ 1, we see
that the Jacobian periodic solutions (20) degenerates to the soliton solutions (18). When G(Z) = C is an arbitrary
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Fig. 4. Fission of the soliton solution (14) in optical fiber with varying gain/loss and frequency chirping for α1 = −0.25,
Θ0 = −α2 = 1, λ = f0 = 2, G(z) = −0.5tanh(−z), h0 = −5.

constant, we have

q(Z,T ) = f0 exp(−2CZ)W
[

f 2
0 (T exp(−2CZ)+

α1Θ0

2C
exp(−4CZ)−h0)

]
expIφ(Z,T ),

φ(Z,T ) =
C

2α1
T 2 +Θ0 exp(−2CZ)T +

exp(−4CZ)α1(Θ 2
0 −λ f 4

0 )
4C

.

(22)

What merits attention is that the nonlinear wave equa-
tion in [28] is a special case of (3) with α2 = 1, β1 =
β2 = −α1 = −1/2. In the condition G = −0.05, from
our results in this paper q1, q5, we can get the simi-
lar results as in the literature [28]. Figure 1 shows the
evolution of a bright self-similar wave. The amplitude
function is

A(Z,T )=exp
(Z

5

)
sech

[
exp

(Z
5

)
T −5exp

(2Z
5

)]
, (23)

and the phase φ(Z,T ) is

φ(Z,T ) = −0.025T2 + exp
( Z

10

)
T.

The nature of these self-similar asymptotic waves hints
to the possibility of designing an amplifier. The pro-
posed device is expected to operate as follows. A lin-
ear phase chirp is imprinted on a fundamental spatial
wave using an appropriate phase mask placed at the en-
trance to nonuniform optical fiber. If the amplifier gain
satisfies the condition given in (6), the entering phase-
chirped spatial wave propagates inside the amplifier as
a self-similar asymptotic wave found in this paper and
is thus compressed as it is amplified, while preserving
its shape. At the exit of the amplifier, a second phase
mask is used to remove the phase chirp. The resulting
beam is an amplified. However, the constants α1, α2
and the functions β1(z), β2(z) are arbitrary in (3) in

this paper. Just the alternative of G(z) makes the solu-
tions for (3) more abundant. If we choose G(z) prop-
erly, we can obtain several novel excitations of (3). Fig-
ures 2 – 4 display three typical self-similar asymptotic
waves under the different initial conditions. Figure 2
shows that the two-solitonlike self-similar wave prop-
agates without changing its form and the peak value
of energy reduces or increases in the form of index.
Generally speaking, a self-similar wave has an ability
to resist splitting. However, what is interesting is, in
the following special example of G(z) in Figure 4, one
soliton has fissed slowly in the course of advancing.

From solutions (14) – (21) we know that the pres-
ence of nonlinearity of (3) is essential for these self-
similar asymptotic waves to exist. Indeed, the absence
of the nonlinearity makes no bound solutions existence
to (3). For example, when α2 = 0, we have the solution:

q9(Z,T ) = f (Z)[e0 + e1 cosh( f 2(Z)g(Z)(T −h(Z)))]

· exp[IB(Z)+ IΘ(Z)T + Iϕ(Z)T 2], (24)

and f (Z), h(Z), B(Z), Θ(Z), ϕ(Z) are functions given
in (10) and (11), and Θ0, f0 obey the following con-
straint:

Θ0 =
1
2

√
2 f 2

0 −2
√

f 4
0 −4, (25)

where e0, e1, f0 are arbitrary constants.
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3. Summary

In summary, we have studied the Schrödinger equa-
tion described for transmission of the pulse in the
nonuniform optical fiber or an average dispersion man-
agement system. We show analytically that spatial self-
similar waves can propagate in the optical fiber with
varying gain/loss and frequency chirping. The inten-
sity profiles of the novel waves are identical. Our stud-
ies reveal that the pulse expands or compresses when
it is being transmitted in the nonuniform optical fiber

because the existence of the frequency chirping co-
efficient. At the same time, the peak value of en-
ergy reduces or increases in the form of index, dif-
ferent from the transmission property of the pulse
in the uniform optical fiber. In particular, our results
shed light on the interesting connection between self-
similar waves and solitons existing in nonuniform non-
linear media, the discovered self-similar waves can
be used in a promising scheme for the amplifica-
tion and focusing of spatial solitons in future optical
network.
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