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The chaotic motion in periodic self-excited oscillators has been extensively investigated through
experiments and computer simulations. However, with the advent of the study of chaotic motion by
means of strange attractors, Poincaré map, fractal dimension, it has become necessary to seek for a
better understanding of nonlinear system with higher order nonlinear terms. In this paper we consider
an extended Duffing-Van der Pol oscillator by introducing a nonlinear quintic term. The dynamical
behaviour of the system is investigated by using Melnikov analysis and numerical simulation. The
results can help one to understand the essence of given nonlinear system.
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1. Introduction

In recent years the study of chaotic phenomena in
the area of nonlinear periodic self-excited oscillators
has attracted much attention [1 – 3]. Among the peri-
odically forced self-excited oscillators, the most exten-
sively studied example is the Duffing-Van der Pol os-
cillator, governed by the equation

ẍ− µ(1− x2)ẋ + ω2
0 x + β x3 = f (t), (1)

where µ > 0, ω0 and β are constant parameters, and
f is a function of time. Originally, it was a model for
an electrical circuit with a triode. In fact, it serves as
a basic model for self-excited oscillations in physics,
engineering, electronics, biology, neurology and many
other disciplines [4, 5]. It is therefore one of the most
intensively studied systems in nonlinear dynamics [6].
The chaotic motion in this system was first explored
and reported by Ueda and Akamatsu [7]. Since then
many researchers were attracted to this topic and
made contributions to the study of the mechanism of
complex phenomenon observed from experiments and
computer simulations. For instance, the authors of [8]
showed that a Van der Pol oscillator with a double well
potential possesses a rich dynamical behaviour with a
vast number of states, the chaotic sea containing many
islands of periodic and phase-locked states, and the
transitions from chaos to regular states being through
various routes: period-doubling phenomena, intermit-
tencies, crises, transient chaos, and quasi-periodicity.
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Moukam Kakmeni et al. [6] studied the strange attrac-
tors and chaotic behaviour of an anharmonic DVP os-
cillator with two external forces by applying numerical
calculations.

With the advent of the study of chaotic motion by
means of strange attractors, Poincaré map, fractal di-
mension, it has become necessary to seek for a better
understanding of nonlinear system with higher order
nonlinear terms. In this paper we consider an extended
Duffing-Van der Pol oscillator or φ6-Van der Pol oscil-
lator

ẍ− µ(1− x2)ẋ + αx + β x3 + δx5 = f (t), (2)

where α = ω2
0 , δ is a constant parameter, and f (t) =

f cosωt is an external excitation. The potential of
which is the φ6 potential given by

V (x) =
α
2

x2 +
β
4

x4 +
δ
6

x6. (3)

Depending on the set of the parameters, it can be con-
sidered at least three physically interesting situations
where the potential is (i) single well, (ii) double well,
and (iii) triple well. Each one of the above three cases
has become a central model to describe inherently non-
linear phenomena, exhibiting a rich and baffling vari-
ety of regular and chaotic motions [8]. Figure 1 shows
two forms of the potential V (x) for α > 0. Throughout
this note we are only concerned with α > 0 cases: a
single well and triple well.
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Fig. 1. Two configurations of the φ6 potential with α > 0:
(a) single well for α = 0.4, β = 0.8 and δ = −0.1; (b) triple
well for α = 1.0, β = −0.5 and δ = 0.05.

This φ6-potential system has attracted much atten-
tion [9 – 11], due to the fact that it is a universal non-
linear differential equation, and many nonlinear os-
cillators in physical, engineering and biological prob-
lems can be really described by the model or analogous
ones. For example, (2) has been utilized to model bista-
bility in the multiple-photon absorption process, soft
and hard springs, four-wave interaction and plasma os-
cillation [8]. The resonance and nonresonance oscilla-
tions of (2) was analyzed by using the multiple scale
method and the condition for existence of homoclinic
bifurcation was obtained by means of the Melnikov
theory [9]. The effect of bounded noise on the chaotic
motion of system (2) in a triple well potential was in-
vestigated through Poincaré maps [10]. In [11], the pe-
riodic and chaotic motions of (2) in the case of the sin-
gle well potential have been observed with the aid of
phase diagrams, and a novel robust control scheme us-
ing sliding mode approach was also proposed.

Nevertheless, the dynamical characteristic of
chaotic motion and the routes to chaos taking place in
this new system have not been described detailed. Es-
pecially, the understanding of the dynamical behaviour
in the system is far from complete. Though a survey of
chaotic behaviour of (2) has been made by employing
phase diagrams in [11], it is very limited to understand
a global picture of the system response. Thus a further
investigation on this nonlinear system by numerical
simulations including bifurcation diagram, phase pro-
jections and Poincaré map, as well as the spectrum of
Lyapunov exponent and fractal dimension is needed.

In this work we will undertake an investigation of
the dynamical behaviour of system (2) with a single
well potential and triple well potential in some detail
by using the Melnikov analysis and numerical simula-
tion.

2. Melnikov Analysis

It is well known that Melnikov theory is one of the
few analytical tools to study the global behaviour of a
dynamical system. It helps to define the condition for
the existence of the so-called transversal intersection
of stable and unstable manifolds of homoclinic orbits.
This may imply the occurrence of the so-called horse-
shoes structure of chaos.

Consider the generalized dynamical equation of a
given system written in the vector form

q̇ = g0(q)+ εgp(q, t), (4)

where q = (x,y) with y = ẋ is the state vector, g0 =
(g1,g2) is the vector field according to the chosen
Hamiltonian with the energy H0 so that g1 = ∂H0

∂y and

g2 = −∂H0
∂x , and gp is a periodic perturbation function.

Let us assume that the unperturbed Hamiltonian
system possesses a closed homoclinic orbit through
the hyperbolic saddle point, because homoclinic or-
bits have been identified as a possible source of chaos.
In the presence of the perturbation gp(q, t), the homo-
clinic orbit can be broken to yield the transverse inter-
section of stable and unstable manifolds, which gives
rise to chaotic behaviour near the separatrix.

The Melnikov function measuring the distance be-
tween the stable and unstable manifolds in the Poincaré
section for the perturbed system is defined by

M(t0) =
∫ +∞

−∞
g0(q0(t))∧gp(q0(t), t + t0)dt, (5)
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where “∧” denotes the exterior product of vectors, and
q0(t) is the unperturbed homoclinic or hetoroclinic or-
bit written as (x0(t),y0(t)). If M(t0) has simple zeros
with M(τ) = 0 and dM(t0)

dt0
�= 0 at t = τ (conditions for

transversal intersection), then a homoclinic or hetoro-
clinic bifurcation occurs, signifying the possibility of
chaotic behaviour.

Here we rewrite (2) in form of a perturbation of a
Hamiltonian system

ẋ = y,

ẏ =−αx−β x3−δx5 +ε[µ(1−x2)y+ f cosωt], (6)

where ε is a small parameter (0 < ε � 1) character-
izing the smallness of the force and dissipative terms.
The unperturbed system (ε = 0) is a integrable Hamil-
ton system with Hamiltonian

H(x,y) =
1
2

y2 +
α
2

x2 +
β
4

x4 +
1
6

δx6. (7)

We consider the case of a triple potential well, i. e. β <
0, α and δ ≥ 0. Through the analysis of the fixed points
(xi,yi) and their stability one can see that five equilib-
rium points exist when ∆ = β 2−4αδ > 0: three stable
center points at (0,0) and (±x2,0), and two unstable

saddle points at (±x1,0) where x1 =
√
− 1

2δ (β +
√

∆)

and x2 =
√
− 1

2δ (β −√
∆).

Thus there are two different types of orbits for each
hyperbolic fixed point: a heteroclinic orbit connect-
ing the two saddle points and a symmetric pair of ho-
moclinic trajectories connecting each unstable saddle
point to itself, which are given by

x0(t) = ±
√

2x1 cosh( γ
2 t)√

ξ + cosh(γt)
,

y0(t) = ±
√

2γ(ξ −1)sinh( γ
2 t)

2(ξ + cosh(γt))
3
2

,

(8)

where γ = x2
1

√
2δ (ρ2 −1),ξ = 5−3ρ2

3ρ2−1 and ρ2 = β−√
∆

β+
√

∆
.

Now let us turn our attention to the perturbed sys-
tem (ε �= 0) and compute the Melnikov integrals (5).
For this system, g0(q) = (y,−αx − β x3 − δx5) and
gp(q, t) = (0,µ(1 − x2)y + f cosωt). Then the Mel-
nikov function M(t0) shown in (5) can be written as

M(t0) =
∫ +∞

−∞
y0[µ(1−x2

0)y0 + f cosω(t +t0)]dt. (9)

Substituting the expressions of the homoclinic trajec-
tories (8) into (9) and calculating some integrals, we
have

M±(t0) = D0 ±D1 sinωt0, (10)

where

D0 =
µx2

1γ
4(1 + ξ )

[
ξ + 2 +

x2
1(ξ −1)
(1 + ξ )

(
ξ 3 + ξ 2 +

ξ −2
3

)

+

(
2ξ + 1√

1− ξ 2
+

x2
1ξ

1 + ξ

)(
arcsinξ − π

2

)]

and

D1 = 2 f x1 sin
2ω
γ

. (11)

We are interested in such parameters f for which M(t0)
has simple zeros for some value τ of t0. M(t0) has a
simple zero, if

|D0

D1
| < 1. (12)

Hence, a sufficient condition for the appearance of
chaos in the sense of Smale is given by

f > − µx1γ
8(1 + ξ )

[
ξ +2+

x2
1(ξ −1)
(1 + ξ )

(
ξ 3 + ξ 2 +

ξ −2
3

)

+
(

2ξ + 1√
1− ξ 2

+
x2

1ξ
1 + ξ

)(
arcsinξ − π

2

)]/
sin

2ω
γ

.

(13)

From this relation, the threshold values of the param-
eters for homoclinic chaos to occur can be obtained.
The analytical prediction provided by (13) can be ver-
ified using a direct numerical simulation of the differ-
ential equation (2). It is found that the analytical treat-
ment predicts in general too low a threshold for chaos.
For instance, for a given set of parameters ω = 1.5,
µ = 0.3, α = 0.385, β = −0.57, δ = 0.16 of the sys-
tem (6), the critical value obtained from the direct an-
alytical prediction (13) is f ∼= 0.24 while the numeri-
cal simulation of (6) gives f ∼= 0.33. This gap had also
been observed in other physical models such as the φ4

model, the magnetic pendulum and multiple equilib-
rium systems [12].
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3. Numerical Simulation

In this section we use some effective numerical tools
such as bifurcation diagrams, the largest Lyapunov ex-
ponent, the Poincaré map and phase plane plot, and the
fractal dimension to study the dynamical behaviours
and chaotic attractors of the system (2). Equation (2)
can be equivalently written as

Ẋ = Y,

Ẏ = f cosωt + µ(1−X2)Y −αX −β X3− δX5.
(14)

Equation (14) is numerically solved by applying the
fourth-order Runge-Kutta (RK4) algorithm. Indeed,
the RK4 algorithm is capable of much greater preci-
sion than Euler, and is probably the most popular. In
the present study, we use the numerical ODE solvers:
[rkf45] or [dverk78] in Maple, which is called the
fourth-fifth order Runge-Kutta-Fehlberg method and
seventh-eighth order Runge-Kutta-Fehlberg method.
These methods are able to provide highly accurate so-
lutions.

Let us study system (14) with a triple well potential.
Choosing the system parameters f = 1.80, µ = 0.68,
α = 0.22, β = −0.58, and δ = 0.16, the dynamical
responses of (14) by varying ω are described in Fig-
ure 2a. The corresponding largest Lyapunov exponents
are computed in Fig. 2b, which confirm the existence
of chaotic regions and periodic orbits. From Fig. 2a,
we can see that the nonlinear dynamic system exhibits
periodic and chaotic behaviours as the control parame-
ter ω is changed. The smeared region in the bifurcation
diagram indicates that the attractor of the system has a
complex structure in parameter space, which manifests
the complexity of the system’s behaviour.

The onset of chaos occurs at ω = 1.141, the cor-
responding largest Lyapunov exponent is 0.067. After
the system has become chaotic, a number of windows
of periodic behaviour appears. If the parameter ω in-
creases to 1.292, the response of the system (14) goes
back to a regular motion, and then through a narrow
chaotic region in the interval ω ∈ (1.357, 1.410). After
that a broad period-3 window is observed. As ω in-
creases further, the system enters a next chaotic region
from period-3 orbit via an intermittent or explosive bi-
furcation at ω = 1.917, and finally returns to periodic
motion by a cascade of inverse period-doubling bifur-
cations. Figure 3 displays the chaotic attractor in the
phase portrait and Poincaré section at ω = 1.393, and
the corresponding largest Lyapunov exponent is 0.195.
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Fig. 2. (a) Bifurcation diagram in the (ω,X) plane of (14),
with f = 1.80, µ = 0.68, α = 0.22, β =−0.58, and δ = 0.16;
(b) the largest Lyapunov exponent corresponding to (a).

From Fig. 2a we can also observe that there is
an interior crisis where the chaotic attractor suddenly
changes in size at ω = 2.075. For clarity, Fig. 4 is used
to demonstrate two different shapes of Poincaré sec-
tions of the strange attractors near the interior crisis.
Figure 3a and b depict the phase trajectories and the
Poincaré map of the chaotic attractor at ω = 2.074,
while the Poincaré map of the attractor at ω = 2.075 is
shown in Figure 4c. The largest Lyapunov exponents
corresponding to the states in Figs. 4a,b and c are, re-
spectively, 0.171 and 0.164.

In order to obtain better insight into the chaos fea-
tures, we may calculate the fractal dimensions, called
Lyapunov dimensions, of the strange attractors accord-
ing to the definition of Kaplan and Yorke [13]

DL = k +
1

| λk+1 |
k

∑
i=1

λi, (15)

where k is defined by the condition that ∑k
i=1 λi ≥ 0
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Fig. 3. (a) Phase projection of the chaotic state at ω = 1.393 in Fig. 2a; (b) the Poincaré map corresponding to (a).
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Fig. 4. Phase projection and Poincaré maps of chaotic states
in Fig. 2a: (a, b) ω = 2.074; (c) ω = 2.075.

and ∑k+1
i=1 λi < 0. For example, the fractal dimension

of the strange attractor (ω = 1.393) shown in Fig. 3
is DL = 2.227. The fractal dimensions of the attractor
given in Fig. 4b (ω = 2.074) is DL = 2.179.

We now turn to consider system (14) in a sin-
gle well case. Fixing f = 3.25, µ = 1.00, α = 0.12,
β = 0.78 and δ = 0.50, and change the parameter ω .
The dynamical responses of system (14) with vary-
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Fig. 5. Bifurcation diagram in the (ω,X)-plane of (14) with
f = 3.25, µ = 1.00, α = 0.12, β = 0.78, and δ = 0.50.

ing ω is described in Figure 5. Chaotic solutions and
period-doubling cascades in the system are clearly
visible.

4. Conclusion and Discussion

To sum up, we have studied the dynamics of the φ6

Duffing-Van der Pol oscillator with a single well and
triple well potentials. The criteria for the appearance
of horseshoe chaos is derived by using the Melnikov
theory. Make use of Maple software, we computed a
great number of diagrams, and some of them show-
ing the main features of the system are presented in
Figures 2 – 5. It is shown that the dynamical chaos can
occur if appropriate system parameters and initial con-
ditions are chosen. It is worth mentioning that the bi-
furcation diagrams of system (14) containing a quintic
nonlinear term are qualitatively different from that of

Duffing-Van der Pol oscillator with a cubic nonlinear
restoring force only (see [8]). Duing to the strong non-
linearity of the quintic term, this differences is not just
a simple deformation or a shift. It can be observed from
our obtained diagrams that the system goes to chaos
from regular motions (or vice versa) usually through
a sequence of period-doubling bifurcations, intermit-
tencies and crisis. But in [8], the quasi-periodic route
leading to chaos emerges frequently when the system
parameters of the forced Duffing-Van der Pol oscillator
are fixed to some special values [8]. Naturally, the dy-
namics exhibited by φ6 Duffing-Van der Pol oscillator
is also some distinct compared to the forced Duffing-
Van der Pol oscillator.

Although the rich dynamics of the extended
Duffing-Van der Pol oscillator (2) has been explored by
theoretic analysis and numerical simulations, it should
be pointed out that there are abundant and complex dy-
namical behaviours still unknown in this new system,
which may contribute to the better understanding of the
essence. From this point of view, it is believed that the
new oscillator deserves further investigation in the near
future.
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