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a Dicle University, Department of Mathematics, 21280 Diyarbakir, Turkey
b Ardahan University, Engineering Faculty, 75100 Ardahan, Turkey

Reprint requests to N. P.; E-mail: npolat@dicle.edu.tr

Z. Naturforsch. 64a, 315 – 326 (2009); received April 22, 2008 / revised August 11, 2008

We consider the existence, both locally and globally in time, the asymptotic behaviour, and the
blow up of solutions to the initial boundary value problem for a class of nonlinear wave equations
with dissipative and dispersive terms. Under rather mild conditions on the nonlinear term and the
initial data we prove that the above-mentioned problem admits a unique local solution, which can
be continued to a global solution, and the solution decays exponentially to zero as t → +∞. Finally,
under a suitable condition on the nonlinear term, we prove that the local solutions with negative and
nonnegative initial energy blow up in finite time.
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1. Introduction

We are concerned with the existence, both locally
and globally in time, the asymptotic behaviour, and the
blow up of solutions to the initial boundary value prob-
lem for the following class of nonlinear wave equations
with dissipative and dispersive terms:

utt −uxx −uxxtt −λ uxxt + u = σ(ux)x,

(x, t) ∈ (0,1)× (0,+∞),
(1)

u(0, t) = u(1,t) = 0, t ≥ 0, (2)

u(x,0) = u0(x), ut(x0) = u1(x), x ∈ [0,1], (3)

where λ is a real number and σ(s) is a given nonlinear
function.

Physically, in real processes, the dissipation and dis-
persion have an important role for the energy ampli-
fication arising from the nonlinearity, and their inter-
action with the nonlinearity accompanies the accumu-
lation, balance, and dissipation of the energy, see [1].
Many mathematicians and physicists focus their atten-
tion to study nonlinear evolution equations with dissi-
pative or dispersive terms or with both of them. There
are a lot of references investigating in detail the restric-
tion conditions among the nonlinearity, the dispersion,
and the dissipation, see [1 – 34].
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The well known viscoelastic equation

utt −uxxt = σ(ux)x (4)

is an important class of nonlinear evolution equations
which was suggested from the longitudinal displace-
ment in a homogeneous rod with nonlinear strain and
viscosity [5]. The dissipative term uxxt , arising from
the viscoelastic bar material, makes the initial bound-
ary value problem of (4) more tractable than that of the
one-dimensional nonlinear elasticity

utt = σ(ux)x.

There are many results [2, 6, 9, 10, 32] on the global
existence, nonexistence and blow up, smoothness and
asymptotic behaviours of solutions for the initial
boundary value problem of (4).

In [32], Zhijian and Changming studied the blow
up of solutions for the initial boundary value problem
of (4).

In [35, 36], another class of nonlinear wave equa-
tions

utt −uxx −uxxtt = a(un
s )x

was suggested in studying the transmission of nonlin-
ear waves in a nonlinear elastic rod.

In [37], Guowang and Shubin proved the existence
and uniqueness of a classical global solution and the
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blow up of solutions to the initial boundary value prob-
lem for the equation

utt −αuxx −β uxxtt = ϕ(ux)x.

Finally they applied the results of the above problem
to the equation arising for nonlinear waves in elastic
rods:

utt −
[
a0 + na1(ux)n−1]uxx −a2uxxtt = 0.

Yacheng and Junsheng [31] studied the global ex-
istence, the asymptotic behaviour, and the blow up of
W k,p solutions to the initial boundary value problem
for the equation

utt −αuxxt −uxxtt = σ(ux)x.

Zhijian [33] studied the global existence, asymp-
totic behaviour, and blow up of solutions to the initial
boundary value problem for a class of nonlinear wave
equations with a dissipative term:

utt + ∆2u + λ ut =
N

∑
i=1

∂
∂xi

σi(uxi).

Polat et al. [23] established the blow up of solutions
of the initial boundary value problem for a class of non-
linear wave equations with a damping term:

utt = divσ( u)+ ∆ut −∆2u.

Zhijian [34] has studied the existence, both locally
and globally in time, the decay estimates, and the blow
up of solutions to the Cauchy problem for a class of
nonlinear dispersive wave equations arising in elasto-
plastic flow:

utt + uxxxx + λ u = σ(ux)x,

and investigated the influence of the dispersive term λ u
for the corresponding solutions.

Levandosky [15] studied the local existence and de-
cay estimates of solutions to the Cauchy problem of
the equation

utt + ∆2u + u = f (u).

Throughout the present paper, we use the following
abbreviations and lemmas:

Lp = Lp[0,1] ‖ · ‖Lp = ‖ · ‖p,

‖ · ‖Wk,p[0,1] = ‖ · ‖k,p, (u,v) =
∫ 1

0
uvdx.

In order to simplify the exposition, different positive
constants might be denoted by the same letter C.

Lemma 1 [31, 33, 38]. Let Ω ∈ Rn be a
bounded domain k ≥ 0, 1 ≤ p ≤ ∞. Assume that
G(z1, . . . ,zh) ∈ Ck(Rh), zi(x, t) ∈ L∞([0,T ];W k,p(Ω))
(i = 1, . . . ,h) and ‖zi‖L∞([0,T ];L∞(Ω)). Then
G(z1, . . . ,zh) ∈ L∞([0,T ];W p,k(Ω)) and

‖G(z1, . . . ,zh)‖L∞([0,T ];W p,k(Ω)) ≤

C(M)
h

∑
i=1

‖zi‖L∞([0,T ];W p,k(Ω)),

where

‖z‖L∞([0,T ];W p,k(Ω)) = ess sup
0≤t≤T

‖z(t)‖k,p.

Lemma 2 [31]. Assume that f (s) ∈Cm+1(R), u,v ∈
L∞([0,T ];W k,p[0,1]), m ≥ 1, and 1 < p < ∞. Then

‖ f (u)− f (v)‖m,p ≤C(‖u‖m,p,‖v‖m,p)‖u− v‖m,p,

0 ≤ t ≤ T.

Lemma 3 [31, 39, 40]. Let Ω ∈ Rn be a bounded do-
main, and u(x) ∈ W 1,2(Ω) be the unique solution of
problem

u−∆u = f (x), x ∈ Ω,

u|∂Ω = 0.
(5)

Assume that f (x) ∈ W k,p(Ω), k ≥ 0, and 1 < p < ∞,
then u(x) ∈W k+2,p(Ω) and

‖u‖k+2,p ≤C‖ f‖k,p.

Remark 1. Take u = u(x, t) and f = f (x, t) in
Lemma 3, then the result of the lemma implies that (I−
∆)−1 : L∞([0,T ];W k,p(Ω)) → L∞([0,T );W k+2,p(Ω)∩
W 1,p

0 (Ω)) and

‖(I−∆)−1 f‖L∞([0,T ],Wk+2,p(Ω)) ≤C‖ f‖L∞([0,T ],W k,p(Ω)),

where (I − ∆)−1 f =
∫

Ω K(x,y) f (y)dy, and K(x,y) is
the Green function of problem (5).

Lemma 4 [31, 41 – 43]. Let K(x,y) be the Green
function of the boundary value problem for the ordi-
nary differential equation

y(x)− y′′(x) = 0, y(0) = y(1) = 0, (6)
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i. e.,

K(x,ξ ) =
1

sinh1

{
sinh(1− ξ )sinhx, 0 ≤ x < ξ ,

sinhξ sinh(1− x), ξ ≤ x ≤ 1.

The Green function K(x,ξ ) satisfies the following
properties:

(1) K(x,ξ ) is defined and continuous in Q = {0 ≤
x ≤ 1, 0 ≤ ξ ≤ 1}.

(2) K(x,ξ ) satisfies the homogeneous equation

K(x,ξ )−Kxx(x,ξ ) = 0, x �= ξ

and the homogeneous conditions

K(0,ξ ) = 0, K(1,ξ ) = 0.

(3) Kx(x,ξ ) has a point of discontinuity of the first
kind at x = ξ and satisfies the condition

Kx(ξ + 0,ξ )−Kx(ξ −0,ξ ) = −1.

(4) K(x,ξ ) = K(ξ ,x).

(5) 0 ≤ K(x,ξ ) <
2
7

, 0 ≤ x ≤ 1, 0 ≤ ξ ≤ 1.

(6) |Kξ ,x(x,ξ )| ≤C, x �= ξ .

The paper is organized as follows. First of all, we
reduce problem (1) – (3) to an equivalent integral equa-
tion by means of the Green function of a boundary
value problem for the second-order ordinary differen-
tial equation (6). Then making use of the contraction
mapping principle we prove the existence and unique-
ness of the local solutions for the integral equation in
Section 2. Under some conditions by use of a priori es-
timates of the solution we prove in Section 3 that prob-
lem (1) – (3) has a unique global solution. The proof
of the asymptotic behaviour of the global solutions is
given in Section 4. In Section 5, the blow up of solu-
tions for problem (1) – (3) is given.

2. Existence and Uniqueness of Local Solutions

In this section we prove the existence and the
uniqueness of the local solutions for problem (1) – (3)
by the contraction mapping principle.

For this purpose let K(x,ξ ) be the Green function of
problem (6); we can rewrite (1) as follows:

[utt + u]− [utt + u]xx = σ(ux)x + λ uxxt . (7)

From (7) and the solution of (1) satisfying condi-
tion (2), we get

utt(x, t)+ u(x, t) =(
I− ∂2

∂x2

)−1

(σ(ux(x, t))x + λ uxxt(x, t))

≡
∫ 1

0
K(x,ξ )[σ(uξ (ξ , t))ξ + λ uξ ξ t(ξ , t)]dξ .

(8)

From (3) and (8) we know that the initial boundary
value problem (1) – (3) is equivalent to the integral
equation

u(x, t) = u0(x)+ u1(x)t −
∫ t

0
(t − τ)u(x,τ)dτ

+
∫ t

0
(t − τ)

(
I − ∂2

∂x2

)−1

(σ(ux(x,τ))x

+ λ uxxτ(x,τ))dτ

≡ u0(x)+ u1(x)t −
∫ t

0
(t − τ)u(x,τ)dτ

+
∫ t

0

∫ 1

0
(t − τ)K(x,ξ )[σ(uξ (ξ ,τ))ξ

+ λ uξ ξ τ(ξ ,τ)]dξ dτ.

(9)

Now we are going to prove the existence and the
uniqueness of the local solution for the integral equa-
tion (9) by the contraction mapping principle.

Let us define the function space

Xk(T )=
{
u(x, t) ∈W 1,∞([0,T ];W k,p[0,1]∩W1,p

0 [0,1]),

u(0, t) = u(1, t) = 0
}
, (10)

which is endowed with the norm

‖u‖Xk(T ) = ‖u‖W1,∞([0,T ];W k,p[0,1])

= ‖u‖L∞([0,T ];W k,p[0,1]) +‖ut‖L∞([0,T ];W k,p[0,1]),

∀u ∈ Xk(T ).

It is easy to see that Xk(T ) is a Banach space. Let M =
‖u0‖k,p +‖u1‖k,p. Take the set

Yk(M,T )=
{
u|u ∈W 1,∞([0,T ];W k,p[0,1]∩W1,p

0 [0,1]),

‖u‖Xk(T ) ≤ M + 2
}
.

Obviously,Yk(M,T ) is a nonempty, bounded, closed
convex subset of Xk(T ) for any fixed M > 0 and T > 0.



318 N. Polat and D. Kaya · Solutions for a Class of Nonlinear Wave Equations

Define the map H as

Hu(x, t) = u0(x)+ u1(x)t −
∫ t

0
(t − τ)u(x,τ)dτ

+
∫ t

0
(t − τ)

(
I − ∂2

∂x2

)−1

· (σ(ux(x,τ))x + λ uxxτ(x,τ))dτ,

(11)

where u ∈ Xk(T ). We can easily show that H maps
Xk(T ) into Xk(T ). If σ(s)∈Ck−1(R), k ≥ 2, 1 < p < ∞,
then from (10) and Lemma 1 we have

ux ∈W 1,∞([0,T ];W k−1,p[0,1]∩L∞[0,1]),

σ(ux) ∈ L∞([0,T ];W k−1,p[0,1]),

and σ(ux)x + λ uxxt ∈ L∞([0,T ];W k−2[0,1]). By
Lemma 3 we get

(
I− ∂2

∂x2

)−1

(σ(ux)x + λ uxxt)

∈ L∞([0,T ];W k,p[0,1]∩W1,p
0 [0,1])

(12)

and Hu ∈ Xk(T ).

Our goal is to show that H has a unique fixed point
in Yk(M,T ) for suitable T .

Theorem 1. Assume that u0,u1 ∈ W k,p[0,1] ∩
W 1,p

0 [0,1] and σ(s) ∈ Ck(R), k ≥ 2, 1 < p < ∞.
Then H is a contractive mapping from Yk(M,T ) into
itself for T sufficiently small relative to M. Then
problem (1) – (3) admits a unique solution u(x, t) ∈
W 2,∞([0,T0);W k,p[0,1] ∩W 1,p

0 [0,1]), where [0,T0) is
the maximal time interval of existence for u(x,t).

Proof. We first prove that H maps Yk(M,T ) into it-
self for T small enough. Let u ∈ Yk(M,T ) be given.
From (11) we get

‖Hu‖k,p ≤ ‖u0‖k,p +‖u1‖k,p T

+
∫ t

0
(t − τ)‖u‖k,p dτ

+
∫ t

0
(t − τ)

∥∥∥∥∥∥
(

I− ∂2

∂x2

)−1

(σ(ux)x + λ uxxτ)

∥∥∥∥∥∥
k,p

dτ.

(13)

Using Lemma 3 and Lemma 1, it follows easily that

‖u‖k,p ≤ M + 2,∥∥∥∥∥∥
(

I − ∂2

∂x2

)−1

(σ(ux)x + λ uxxt)

∥∥∥∥∥∥
k,p

≤C‖σ(ux)x + λ uxxt‖k−2,p ≤C(M)(M + 2).

(14)

Substituting inequality (14) into (13) we obtain

‖Hu‖k,p ≤ ‖u0‖k,p +‖u1‖k,p T

+
1
2
(C(M)+ 1)(M + 2)T 2.

(15)

On the other hand, from (11) and (14) we get

(Hu)t = u1 −
∫ t

0
udτ

+
∫ t

0

(
I− ∂2

∂x2

)−1

(σ(ux)x + λ uxxτ)dτ,

‖(Hu)t‖k,p ≤ ‖u1‖k,p +(C(M)+ 1)(M + 2)T.

(16)

Thus from (15) and (16) we have

‖Hu‖Xk(T ) ≤ M +(M +(C(M)+ 1)(M + 2))T

+
1
2
(C(M)+ 1)(M + 2)T2.

If T satisfies

t ≤ min
{

1
M +(C(M)+ 1)(M + 2)

,

[
2

(C(M)+ 1)(M + 2)

]1/2}
,

(17)

then

‖Hu‖Xk(T ) ≤ M + 2. (18)

Therefore, if condition (17) holds, then H maps
Yk(M,T ) into Yk(M,T ).

Let T > 0 and u,v ∈ Yk(M,T ) be given. We have

‖Hu−Hv‖k,p ≤
∫ t

0
(t − τ)‖u− v‖k,pdτ

+
∫ t

0
(t − τ)

∥∥∥∥∥
(

I− ∂2

∂x2

)−1

[(σ(ux)−σ(vx))x

+ λ (u− v)xxτ ]

∥∥∥∥∥
k,p

dτ.

(19)
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By Lemma 3 and Lemma 2, we obtain∥∥∥∥∥∥
(

I− ∂2

∂x2

)−1

[(σ(ux)−σ(vx))x + λ (u− v)xxt]

∥∥∥∥∥∥
k,p

≤C[C(M)‖u− v‖k,p +‖(u− v)t‖k,p]. (20)

Substituting inequality (20) into (19) we obtain

‖Hu−Hv‖k,p ≤ 1
2

C(M)T 2‖u− v‖Xk(T ). (21)

On the other hand, from (11) and (20) we get

‖(Hu−Hv)t‖k,p ≤C(M)T‖u− v‖Xk(T ). (22)

Thus from (21) and (22) we have

‖Hu−Hv‖Xk(T ) ≤C(M)T‖u− v‖Xk(T )

+
1
2

C(M)T 2‖u− v‖Xk(T ).

Take T satisfying (17) and

T < min

{
1

2C(M)
,

[
1

C(M)

]1/2
}

. (23)

Then

‖Hu−Hv‖Xk(T ) < ‖u− v‖Xk(T ). (24)

This shows that H : Yk(M,T ) → Yk(M,T ) is strictly
contractive.

From (18) and (24) and the contraction mapping
principle, for appropriately chosen T > 0, H has a
unique fixed point u(x,t)∈Yk(M,T ), which is a unique
solution of problem (1) – (3). And from (8) and (12) we
have

utt(x, t)+u(x,t) =

(
I− ∂2

∂x2

)−1

(σ(ux)x+λ uxxt)

∈ L∞([0,T ];W k,p[0,1]∩W1,p
0 [0,1]).

(25)

Thus (25) implies

u(x, t)∈W 2,∞([0,T0);W k,p[0,1]∩W1,p
0 [0,1]), (26)

where [0,T0) is the maximal time interval of existence
for u ∈ Xk(T0). This completes the proof of the theo-
rem.

Now, we discuss the global existence and unique-
ness of solutions.

3. Existence and Uniqueness of Global Solutions

In this section, we prove the existence and unique-
ness of the global solutions for problem (1) – (3). For
this purpose we are going to make a priori estimates
of the local solutions for problem (1) – (3) and we sup-
pose that the conditions of Theorem 1 hold.

Theorem 2. Assume that u0,u1 ∈ W 2,p[0,1] ∩
W 1,p

0 [0,1], σ(s) ∈C2(R), 1 < p < ∞, and the following
conditions hold:

(i) σ(s)s ≥ 0, s ∈ R;

(ii) |σ(s)| ≤C1
∫ s

0 σ(y)dy +C2, s ∈ R, where C1 and
C2 are positive constants.

Then for any T > 0 problem (1) – (3) ad-
mits a unique global solution u(x, t) ∈ W 2,∞([0,T ];
W 2,p[0,1]∩W1,p

0 [0,1]).

Proof. Taking the L2 inner product with ut in (1) and
integrating the resulting expression over [0, t] we get

‖u(t)‖2
H1 +‖ut(t)‖2

H1 + 2
∫ 1

0
F(ux)dx

+2λ
∫ t

0
‖uxτ(τ)‖2

2 dτ =

‖u0‖2
H1 +‖u1‖2

H1 + 2
∫ 1

0
F(u0x)dx,

(27)

where F(s) =
∫ s

0 σ(y)dy.
If σ(s)s ≥ 0, s ∈ R, then F(s) ≥ 0. Thus from (27)

we have

‖u(t)‖2
H1 +‖ut(t)‖2

H1 + 2
∫ 1

0
F(ux)dx ≤ ‖u0‖2

H1

+‖u1‖2
H1 + 2

∫ 1

0
F(u0x)dx + 2|λ |

∫ t

0
‖uxτ(τ)‖2

2 dτ.

From the above inequality and the Gronwall inequality
we get

‖u(t)‖2
H1 +‖ut(t)‖2

H1 +2
∫ 1

0
F(ux)dx ≤C(T ) (28)

and

‖u(t)‖2
H1 +‖ut(t)‖2

H1 ≤C(T ), 0 ≤ t ≤ T, (29)

where C(t) is a constant dependent on T .
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With partial integration of (28), we obtain

utt (x, t)+ u(x,t)

=
∫ 1

0
K(x,ξ )[σ(uξ (ξ ,t))ξ + λ uξ ξ t(ξ ,t)]dξ

= −
∫ 1

0
Kx(x,ξ )[σ(uξ (ξ ,t))+ λ uξ t(ξ , t)]dξ .

Differentiating the above equation with respect to x and
using (3) of Lemma 4 it follows that

uttx(x, t)+ ux(x,t)

= − lim
δ→0

(∫ x−δ

0
+
∫ x+δ

x−δ
+
∫ 1

x+δ
Kξ x(x,ξ )[σ(uξ (ξ , t))

+λ uξ t(ξ ,t)]dξ
)

= − lim
δ→0

(∫ x−δ

0
+
∫ 1

x+δ
Kξ x(x,ξ )[σ(uξ (ξ ,t))

+λ uξ t(ξ ,t)]dξ
)

−σ(ux(x, t))−λ uxt(x,t).

(30)

Multiplying both sides of (30) by uxt and using (6) of
Lemma 4 we get

1
2

d
dt

(u2
xt + u2

x + 2F(ux))+ λ u2
xt

≤C
∫ 1

0
(|σ(uξ )|+ |λ uξ t|)dξ |uxt |.

(31)

By condition (ii) of Theorem 2, the Young inequality,
and inequality (28) we have∫ 1

0
(|σ(uξ )|+ |λ uξ t|)dξ ≤

∫ 1

0

(
C1F(uξ )+C2 +

1
2
(u2

ξ t + λ 2)
)

dξ ≤C(T ).
(32)

Substituting inequality (32) into inequality (31) and us-
ing the Young inequality we obtain

d
dt

(u2
xt + u2

x + 2F(ux))

≤C3(T )+
(

2|λ |+ 1
2

)
u2

xt .

(33)

Here C3(T ) is a constant dependent on T . Integrat-
ing (33) with respect to t and using the Gronwall in-
equality we get

‖uxt‖2
∞ +‖ux‖2

∞ + 2‖F(ux)‖∞ ≤

(‖u1‖2
∞ +‖u0x‖2

∞ + 2‖F(u0x)‖∞ +C3(T )T )e(2|λ |+ 1
2)T .

By assumption (i) of Theorem 2 and the above inequal-
ity we obtain

‖uxt‖2
∞ +‖ux‖2

∞ ≤C(T ), 0 ≤ t ≤ T. (34)

Using Lemma 3 and Lemma 1, it follows easily that∥∥∥∥∥∥
(

I − ∂2

∂x2

)−1

(σ(ux)x + λ uxxt)

∥∥∥∥∥∥
2,p

≤C(‖u‖2,p +‖ut‖2,p).

(35)

From (9) and (35) we obtain

‖u‖2,p ≤ ‖u0‖2,p +‖u1‖2,pT

+ T
∫ t

0
[(C + 1)‖u‖2,p +C‖uτ‖2,p]dτ,

(36)

‖ut‖2,p ≤ ‖u1‖2,p

+
∫ t

0
[(C + 1)‖u‖2,p +C‖uτ‖2,p]dτ.

(37)

Thus from (36) and (37) we have

‖u‖2,p +‖ut‖2,p ≤ ‖u0‖2,p +‖u1‖2,p(1 + T)

+C(1 + T)
∫ t

0
(‖u‖2,p +‖uτ‖2,p)dτ.

Applying the Gronwall inequality to the above inequal-
ity we obtain

‖u‖2,p +‖ut‖2,p ≤C(T ), 0 ≤ t ≤ T. (38)

From (25), (35), and (38) we have

‖utt‖2,p +‖u‖2,p ≤C(‖u‖2,p +‖ut‖2,p),

‖utt‖2,p ≤C(T ), 0 ≤ t ≤ T,

and

u(x, t) ∈W 2,∞([0,T ];W 2,p[0,1]∩W1,p
0 [0,1]).

By the arbitrariness of T and (26), T0 = ∞, Theorem 2
is proved.

Theorem 3. If σ ′(s) is bounded from below, i. e.,
there is a constant C0 such that σ ′(s)≥C0 and |σ̃(s)| ≤
C4
∫ s

0 σ̃(y)dy +C5, s ∈ R where σ̃(s) = σ(s)− k0s−
σ(0), k0 = min{C0,0} ≤ 0, C3 and C4 are positive con-
stants, then the conclusion of Theorem 2 also holds.

Proof. Let σ̃(s) = σ(s)− k0s −σ(0), where k0 =
min{C0,0} ≤ 0. Obviously σ̃(0) = 0, σ̃ ′(s) = σ ′(s)−
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k0 ≥ 0, and σ̃(s) is a monotonically increasing func-
tion. Then F̃(s) =

∫ s
0 σ̃(y)dy≥ 0. From (27) and noting

that

F(s) =
∫ s

0
σ(y)dy =

∫ s

0
[σ̃(y)+ k0y + σ(0)]dy,

we have

‖u(t)‖2
H1 +‖ut(t)‖2

H1 + 2
∫ 1

0
F̃(ux)dx

≤ ‖u0‖2
H1 +‖u1‖2

H1 + 2
∫ 1

0
F̃(u0x)dx

+ k0‖u0x‖2
2 + 2|λ |

∫ t

0
‖uxτ(τ)‖2

2 dτ − k0‖ux(t)‖2
2

= ‖u0‖2
H1 +‖u1‖2

H1 + 2
∫ 1

0
F̃(u0x)dx + k0‖u0x‖2

2

+ 2|λ |
∫ t

0
‖uxτ(τ)‖2

2 dτ − k0‖u0‖2
2 −2k0

∫ t

0
(u,uτ)dτ

≤ ‖u1‖2
2 +(1− k0)‖u0‖2

2 +(1 + k0)‖u0x‖2
2 +‖u1x‖2

2

+ 2
∫ 1

0
F̃(u0x)dx

+
∫ t

0
[(2|λ |+ 1)‖uτ(τ)‖2

2 + k2
0 ‖u(τ)‖2

2]dτ.

From the above inequality and the Gronwall inequality
we get

‖u(t)‖2
H1 +‖ut(t)‖2

H1 + 2
∫ 1

0
F̃(ux)dx ≤C(T ),

0 ≤ t ≤ T.

Therefore substituting σ(s) = σ̃(s) + k0s + σ(0)
into (1) and the other, and repeating the proof in Theo-
rem 2 leads to the conclusions of Theorem 3.

Theorem 4. Assume that u0,u1 ∈ W k,p[0,1] ∩
W 1,p

0 [0,1], σ(s) ∈ Ck(R), k > 2, 1 < p < ∞, and the
following conditions hold:

(i) σ(s)s ≥ 0, s ∈ R;

(ii) |σ(s)| ≤C1
∫ s

0 σ(y)dy +C2, s ∈ R.

Then for any T > 0 problem (1) – (3) admits a unique
global solution u(x,t) ∈ W 2,∞([0,T ];W k,p[0,1] ∩
W 1,p

0 [0,1]).

Proof. From Theorem 1 we know that problem
(1) – (3) admits a unique local solution u(x, t) ∈

W 2,∞([0,T0);W k,p[0,1]. From the proof of the theorem
we have u(x, t) ∈ W 2,∞([0,T ];W 2,p[0,1]∩W 1,p

0 [0,1]),
∀T > 0.

From (9) and (14), we have

‖u‖k,p ≤ ‖u0‖k,p +‖u1‖k,p T

+ T
∫ t

0
[(C + 1)‖u‖k,p +C‖uτ‖k,p]dτ,

(39)

‖ut‖k,p ≤ ‖u1‖k,p

+
∫ t

0
[(C + 1)‖u‖k,p +C‖uτ‖k,p]dτ.

(40)

Adding inequalities (39) and (40), and applying the
Gronwall inequality to the resulting inequality, we ob-
tain

‖u‖k,p +‖ut‖k,p ≤C(T ), 0 ≤ t ≤ T. (41)

From (25), (14), and (41) we have

‖utt‖k,p +‖u‖k,p ≤C(‖u‖k,p +‖ut‖k,p),

‖utt‖k,p ≤C(T ), 0 ≤ t ≤ T,

and

u(x, t) ∈W 2,∞([0,T ];W k,p[0,1]∩W1,p
0 [0,1]).

By the arbitrariness of T and (26), T0 = ∞, Theorem 4
is proved.

4. Asymptotic Behaviour of Solutions

In this section, we discuss the asymptotic behaviour
of the solutions for problem (1) – (3). For this purpose
we define the energy by

E(t) =
1
2
(‖u(t)‖2

H1 +‖ut(t)‖2
H1)+

∫ 1

0
F(ux)dx, (42)

where F(s) =
∫ s

0 σ(y)dy.

Theorem 5. Let λ > 0, 1 < p < ∞ and assume that

(i) either σ(s)s≥ 0 or σ ′(s)≥C0, s∈R, where C0 is
a constant;

(ii) E(0) = 1
2(‖u0‖2

H1 +‖u1‖2
H1)+

∫ 1
0 F(u0x)dx > 0;

(iii) D(s) ≤ bσ(s)s, s ∈ R, where b > 0 is a constant.
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Then for the global W 2,p solution u(x,t) of problem
(1) – (3) there exist δ1 > 0 and M > 0 such that

‖u(t)‖2
H1 +‖ut(t)‖2

H1 + 2
∫ 1

0
F(ux)dx ≤ ME(0)e−δ1t ,

t > 0. (43)

Proof. Let u(x,t) be a global W 2,p solution of prob-
lem (1) – (3). Taking the L2 inner product of (1) with ut
it follows that

d
dt

E(t)+ λ ‖uxt(t)‖2
2 = 0, t > 0. (44)

Multiplying (44) by eδ t gives

d
dt

(eδ tE(t))+λ eδ t ‖uxt(t)‖2
2 = δeδ tE(t), t > 0. (45)

Integrating (45) over (0,t) we get

eδ tE(t)+ λ
∫ t

0
eδτ ‖uxτ(τ)‖2

2 dτ =

E(0)+
δ
2

∫ t

0
eδτ(‖uτ(τ)‖2

2 +‖uxτ(τ)‖2
2)dτ

+δ
∫ t

0
eδτ
(

1
2
‖u(τ)‖2

2 +
1
2
‖ux(τ)‖2

2 +
∫ 1

0
F(ux)dx

)
dτ,

t > 0. (46)

Case 1. If σ(s)s ≥ 0, s ∈ R, then F(s) ≥ 0. Thus
from assumption (iii) of Theorem 5 we have 0 ≤
F(s) ≤ bσ(s)s. Using this relation and (1) we obtain∫ t

0
eδτ
(

1
2
‖u(τ)‖2

2 +
1
2
‖ux(τ)‖2

2 +
∫ 1

0
F(ux)dx

)
dτ

≤ b1

∫ t

0
eδτ
(
‖u(τ)‖2

2 +‖ux(τ)‖2
2 +

∫ 1

0
σ(ux)uxdx

)
dτ

= −b1

∫ t

0
eδτ
[
(uττ ,u)+(uxττ ,ux)+

λ
2

d
dτ

‖ux(τ)‖2
2

]
dτ

= −b1

[
eδτ
(

(ut ,u)+ (uxt ,ux)+
λ
2
‖ux(t)‖2

2

)

−
(

(u1,u0)+ (u1x,u0x)+
λ
2
‖u0x‖2

2

)

−
∫ t

0
eδτ
(
‖uτ(τ)‖2

2 +‖uxτ(τ)‖2
2

)
dτ

+δ
∫ t

0
eδτ
(

(uτ ,u)+ (uxτ ,ux)+
λ
2
‖ux(τ)‖2

2

)
dτ
]

≤ 2b1

∫ t

0
eδτ ‖uxτ (τ)‖2

2 dτ +(1 + λ )b1eδ tE(t)

+ (1 + λ )b1E(0)+ (1 + λ )b1δ
∫ t

0 eδτE(τ)dτ,

t > 0, (47)

where b1 = max
{ 1

2 ,b
}

. Substituting inequality (47)
into (46) we obtain

eδ tE(t)+ λ
∫ t

0
eδτ ‖uxτ(t)‖2

2 dτ ≤

(1 +(1 + λ )b1δ )E(0)+ (1 + 2b1)δ
∫ t

0
eδτ ‖uxτ(t)‖2

2 dτ

+(1 + λ )b1δeδ tE(t)+ (1 + λ )b1δ 2
∫ t

0
eδτE(τ)dτ,

t > 0. (48)

Take δ : 0 < δ < min
{

λ
1+2b1

, 1
(1+λ )b1

}
, we deduce

from (48) that

eδ tE(t) ≤ M
2

E(0)+ θδ
∫ t

0
eδτE(τ)dτ, (49)

where M
2 = 1+(1+λ )b1δ

1−(1+λ )b1δ and θ = (1+λ )b1δ
1−(1+λ )b1δ < 1. Ap-

plying the Gronwall inequality to (49) we obtain the
result of (43) for δ1 = (1−θ )δ > 0.

Case 2. If σ ′(s)≥C0, s ∈ R, let σ̃(s) = σ(s)−k0s−
σ(0), where k0 = min{C0,0}≤ 0. Obviously σ̃(0)= 0,
σ̃ ′(s) = σ ′(s)− k0 ≥ 0, σ̃(s)s ≥ 0, s ∈ R, and if as-
sumption (iii) of Theorem 5 holds, then a simple cal-
culation shows that 0 ≤ F̃(s) =

∫ s
0 σ̃(y)dy ≤ bσ̃(s)s,

s ∈ R. Therefore substituting σ(s) = σ̃(s)+k0s+σ(0)
into (1) and repeating the proof of Case 1 implies the
conclusions of Theorem 5. The theorem thus is proved.

5. Blow up of Solutions

In this section, we consider the blow up of solutions
for problem (1) – (3). For this purpose, we define the
energy by (42).

Theorem 6. Assume that
(i) σ(s)∈Ck(R), σ(s)s≤αF(s)≤−αβ |s|m+1, k ≥

2, s ∈ R, where α > 2, β > 0 and m > 1 are constants;
(ii) u0,u1 ∈ W k,p[0,1]∩W1,p

0 [0,1], 1 < p < ∞ such
that the initial energy

(iii) E(0) =
1
2
(‖u0‖2

H1 +‖u1‖2
H1)

+
∫ 1

0
F(u0x)dx < 0.

(50)

Then the W k,p solution u(x, t) blows up in finite time T̃ ,
that is

‖u(t)‖2
H1 +‖ut(t)‖2

H1 + λ
∫ t

0
‖ux(τ)‖2

2 dτ → ∞

as t → T̃−,

(51)
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where T̃ is different for different conditions with
λ ≥ 0.

Proof. By multiplying (1) by ut and integrating the
new equation in the interval (0,1) we obtain

E ′(t)+λ ‖uxt(t)‖2
2 = 0, E(t)≤E(0)< 0, t ≥ 0. (52)

Let

H(t) = ‖u(t)‖2
2 +‖ux(t)‖2

2 +λ
∫ t

0
‖ux(τ)‖2

2 dτ, (53)

then

H ′(t) = 2(u,ut)+ 2(ux,uxt)+ λ ‖ux(t)‖2
2 , (54)

H ′′(t) = 2
(
‖ut(t)‖2

2 +‖uxt(t)‖2
2 +

∫ 1

0
uxuxttdx

)

+ 2
∫ 1

0
u(uxx + uxxtt + λ uxxt −u +(σ(ux))x)dx

+
d
dt

λ ‖ux(t)‖2
2

= 2
(
‖ut(t)‖2

2 +‖uxt(t)‖2
2 −‖ux(t)‖2

2 −‖u(t)‖2
2

−
∫ 1

0
uxσ(ux)dx

)

≥ 2
(
‖ut(t)‖2

2 +‖uxt(t)‖2
2 −‖ux(t)‖2

2 −‖u(t)‖2
2

−α
∫ 1

0
F(ux)dx

)

≥ 2
(

2‖ut(t)‖2
2 + 2‖uxt(t)‖2

2 − (α −2)
∫ 1

0
F(ux)dx

−2E(0)
)

≥ 2
(

2‖ut(t)‖2
2 + 2‖uxt(t)‖2

2 +(α −2)β ‖ux(t)‖m+1
m+1

−2E(0)
)

, t > 0, (55)

where the assumption (i) of Theorem 6 and the fact that

α
∫ 1

0
F(ux)dx ≤ 2E(0)−‖ut(t)‖2

2 −‖ux(t)‖2
2

−‖uxt(t)‖2
2 −‖u(t)‖2

2 +(α −2)
∫ 1

0
F(ux)dx

have been used. Taking (55) and integrating this, we

obtain

H ′(t) ≥
2(α −2)β

∫ t

0
‖ux(τ)‖m+1

m+1 dτ −4E(0)t + H ′(0),

t > 0

(56)

After this calculation, we could add (55) with (56).
Then we get

H ′′(t)+ H ′(t)

≥ 4‖ut(t)‖2
2 + 4‖uxt(t)‖2

2

+ 2(α −2)β
(
‖ux(t)‖m+1

m+1 +
∫ t

0
‖ux(τ)‖m+1

m+1 dτ
)

−4E(0)(1 + t)+ H ′(0) = g(t), t > 0. (57)

Take r = m+3
2 , obviously 2 < r < m+1 and r′ = m+3

m+1
(< 2). By using the Young inequality and the Sobolev-
Poincaré inequality, we get

|(u,ut)| ≤ 1
r
‖u(t)‖r

r +
1
r′
‖ut(t)‖r′

r′

≤C1[(‖ux(t)‖m+1
m+1)

µ +(‖ut(t)‖2
2)

µ ],

|(u,ut)|
1
µ ≤C2[‖ux(t)‖m+1

m+1 +‖ut(t)‖2
2], t > 0, (58)

and similarly

|(ux,uxt)|
1
µ ≤C3[‖ux(t)‖m+1

m+1 +‖uxt(t)‖2
2], t > 0, (59)

where in this inequality and in the sequel Ci (i =
1,2, . . .) denote positive constants independent of t,
µ = m+3

2(m+1) (< 1). By the Sobolev-Poincaré inequality
and the Hölder inequality

‖ux(t)‖m+1
m+1 ≥

(
‖u(t)‖2

2

)m+1
2

, t > 0, (60)

‖ux(t)‖m+1
m+1 ≥

(
‖ux(t)‖2

2

)m+1
2

, t > 0, (61)

∫ t

0
‖ux(τ)‖m+1

m+1 dτ ≥ t
1−m

2

(∫ t

0
‖ux(τ)‖2

2 dτ
)m+1

2
,

t > 0. (62)

(1) If λ > 0, by using the inequalities (58) – (62),
we obtain

g(t) ≥C4

(
4‖ux(t)‖m+1

m+1 +‖ut(t)‖2
2 +‖uxt(t)‖2

2

+
∫ t

0
‖ux(τ)‖m+1

m+1 dτ
)
−4E(0)t + H ′(0)
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≥C5

(
|(u,ut)|

1
µ + |(ux,uxt)|

1
µ +

(
‖u(t)‖2

2

)m+1
2

+
(
‖ux(t)‖2

2

)m+1
2 + t

1−m
2

(∫ t

0
‖ux(τ)‖2

2 dτ
)m+1

2
)

−4E(0)t + H ′(0)

≥C6t
1−m

2

(
|(u,ut)|γ + |(ux,uxt)|γ +

(
‖u(t)‖2

2

)γ

+
(
‖ux(t)‖2

2

)γ
+
(∫ t

0
‖ux(τ)‖2

2 dτ
)γ )

−4E(0)t + H ′(0)−C6t
1−m

2 , t ≥ 1, (63)

where in this inequality and in the sequel γ = 1
µ > 1.

Since −4E(0)t + H ′(0)−C6t
1−m

2 → ∞ as t → ∞, there
must be a t1 ≥ 1 such that

−4E(0)t + H ′(0)−C6t
1−m

2 ≥ 0 as t ≥ t1. (64)

Let

y(t) = H ′(t)+ H(t), (65)

then from (56) and (53) we obtain y(t) > 0 as t ≥ t1.
By using the inequality

(a1 + . . .+ al)n ≤ 2(n−1)(l−1)(an
1 + . . .+ an

l ),

where ai ≥ 0 (i = 1, . . . , l) and n > 1 are real numbers,
the fact (64) and using (63), we get

g(t) ≥C6t
1−m

2 yγ(t), t ≥ t1. (66)

So combining (57) with (66) gives

y′(t) ≥C6t
1−m

2 yγ(t), t ≥ t1. (67)

Therefore, there exists a positive constant

T̃ ≤



[
t

3−m
2

1 +
3−m

2C6(γ −1)yγ−1(t1)

] 2
3−m

,m �= 3,

t1 · exp
1

C6(γ −1)yγ−1(t1)
, m = 3,

(68)

such that

y(t) → ∞ as t → T̃−. (69)

By using (53), (54), and (69), we find

2‖u(t)‖2
2 +‖ut(t)‖2

2 +(λ + 2)‖ux(t)‖2
2 +‖uxt(t)‖2

2

+λ
∫ t

0
‖ux(τ)‖2

2 dτ ≥ H ′(t)+ H(t)→ ∞

as t → T̃−.

(70)

So (70) implies (51).
(2) If λ = 0 by using the inequalities (58) – (61), we

obtain

g(t) ≥C7

(
4‖ux(t)‖m+1

m+1 +‖ut(t)‖2
2 +‖uxt(t)‖2

2 + 1
)

−4E(0)t + H ′(0)

≥C8

[
|(u,ut)|γ + |(ux,uxt)|γ +

(
‖u(t)‖2

2

)γ

+
(
‖ux(t)‖2

2

)γ]−4E(0)t + H ′(0),

t > 0. (71)

By the same method as used in deriving (67), there
must be a t2 > 0 such that −4E(0)t + H ′(0) > 0 and
y(t) = H ′(t)+ H(t) > 0 as t ≥ t2. So combining (57)
with (71) yields

y′(t) ≥C8yγ(t), t ≥ t2. (72)

Equation (72) implies that there exists a positive con-
stant T̃ = t2 + [C9(γ − 1)yγ−1(t2)]−1 such that y(t) →
∞ as t → T̃−. Since y(t) ≤ 2‖u(t)‖2

2 + ‖ut(t)‖2
2 +

2‖ux(t)‖2
2 +‖uxt(t)‖2

2, (51) is satisfied. This completes
the proof.

Theorem 7. Suppose that the conditions (i) and (ii)
of Theorem 6 hold and one of the following conditions
are valid:

(i) E(0) = 0, and, if λ > 0, H ′(0) ≥C10t
1−m

2 for t ≥
1, and, if λ = 0, H ′(0) > 0 for t > 0.

(ii) E(0) > 0, and, if λ > 0, H ′(0) ≥ 4E(0)(1 + t)+
C10t

1−m
2 for some t3 ≥ 1, and, if λ = 0, H ′(0) >

4E(0)(1 + t) for some t4 > 0.

Then the W k,p solution u(x, t) blows up in finite time T̃ .

Proof. At first we assume that condition (i) holds.
(1) If λ > 0 then using inequalities (58) – (62), we

obtain

g(t) ≥C9t
1−m

2

(
|(u,ut)|γ + |(ux,uxt)|γ +

(
‖u(t)‖2

2

)γ

+
(
‖ux(t)‖2

2

)γ
+
(∫ t

0
‖ux(τ)‖2

2 dτ
)γ
)

−4E(0)(1 + t)+ H ′(0)−C9t
1−m

2 , t ≥ 1.

(73)

From condition (i) we have

−4E(0)(1 + t)+ H ′(0)−C9t
1−m

2 = H ′(0)−C9t
1−m

2

≥ 0 as t ≥ 1. (74)
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Thus, we obtain y(t) > 0 as t ≥ 1. By the similar
method as used in deriving (67), we find

y′(t) ≥C10t
1−m

2 yγ(t), t ≥ 1. (75)

Therefore there exists a positive constant

T̃ ≤



[

1 +
3−m

2C9(γ −1)yγ−1(1)

] 2
3−m

, m �= 3,

exp
1

C9(γ −1)yγ−1(1)
, m = 3,

(76)

such that y(t) → ∞ as t → T̃−.
(2) If λ = 0 then using inequalities (58) – (61), we

obtain

g(t) ≥C10

[
|(u,ut)|γ + |(ux,uxt)|γ +

(
‖u(t)‖2

2

)γ

+
(
‖ux(t)‖2

2

)γ ]−4E(0)(1 + t)+ H ′(0),
t > 0.

(77)

From condition (i), we have

−4E(0)(1+ t)+H ′(0) = H ′(0) > 0 as t > 0. (78)

Thus we obtain y(t) > 0 as t > 0. As a result, we get

y′(t) ≥C11yγ (t), t > 0. (79)

Equation (79) implies that there exists a positive con-
stant T̃ ≤ [C11(γ −1)yγ−1(0)]−1 such that y(t) → ∞ as
t → T̃−.

Second, we assume that condition (ii) holds.
(1) If λ > 0 from condition (ii) we have

−4E(0)(1+ t)+H ′(0)−C10t
1−m

2 ≥ 0 as t ≥ t3. (80)

By use of inequalities (58) – (62) and (80), we obtain
y(t) > 0 as t > t3. Thus, we find

y′(t) ≥C10t
1−m

2 yγ(t), t ≥ t3. (81)

Therefore, there exists a positive constant

T̃ ≤



[

t
3−m

2
3 +

3−m
2C10(γ −1)yγ−1(t3)

] 2
3−m

, m �= 3,

t3 · exp
1

C10(γ −1)yγ−1(t3)
, m = 3,

(82)

such that y(t) → ∞ as t → T̃−.
(2) If λ = 0 from condition (ii) we have

−4E(0)(1 + t)+ H ′(0) > 0 as t ≥ t4. (83)

By use of inequalities (58) – (61) and (83), we obtain
y(t) > 0 as t ≥ t4. It follows that

y′(t) ≥C11yγ(t), t ≥ t4. (84)

Equation (84) implies that there exists a positive con-
stant T̃ ≤ t4 +[C11(γ −1)yγ−1(t4)]−1 such that y(t) →
∞ as t → T̃−. The theorem is proved.
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