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With an extended mapping approach and a linear variable separation approach, a series of solutions
(including the Weierstrass elliptic function solutions, solitary wave solutions, periodic wave solutions
and rational function solutions) of the (2+1)-dimensional modified dispersive water-wave system
(MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we find
a few new folded solitary wave excitations.
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1. Introduction

Soliton theory is an important aspect of nonlinear
science. It is widely applied in many natural sciences
such as chemistry, biology, mathematics, communica-
tion, and in particular in almost all branches of physics
like fluid dynamics, plasma physics, field theory, op-
tics, and condensed matter physics [1 – 6]. Previously,
much efforts have been focused on single valued lo-
calized excitations, such as solitoffs, dromions, rings,
lumps, breathers, instantons, peakons, compactons, lo-
calized chaotic, and fractal patterns [7 – 20]. However,
there are various complicated phenomena in the real
natural world like bubbles on a fluid surface or ocean
waves, which are folded and obviously cannot be de-
scribed by single valued functions. In [21], Tang and
Lou introduced some multi-valued localized excita-
tions to describe folded solitary waves and to define
a new type of soliton – foldon. Actually, the simple
foldons in lower dimensions can be equivalently called
the loop solitons which can be found in many (1+1)-
dimensional integrable models [22, 23] and have been
applied in some physical branches like quantum the-
ory, string theory, and particle physics [24, 25]. But
for these lower-dimensional foldons we know little on
foldons in higher dimensions. In this paper, by us-
ing some multi-valued functions, we found some new
folded localized excitations in the (2+1)-dimensional
modified dispersive water-wave system (MDWW)

uty + uxxy −2vxx − (u2)xy = 0,
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vt − vxx −2(uv)x = 0. (1)

The MDWW system is used to model nonlinear
and dispersive long gravity waves travelling in two
horizontal directions in shallow water with uniform
depth. It can also be derived from the celebrated
Kadomtsev-Petviashvili (KP) equation by a symmetry
constraint [26].

2. New Exact Solutions of the (2+1)-Dimensional
MDWW System

In this section, we give some exact solutions of
the MDWW system, including solitary wave solu-
tions, trigonometric function solutions, rational solu-
tions, and Weierstrass function solutions.

Letting f ≡ f (ξ (x)) and g ≡ g(ξ (x)), where ξ ≡
ξ (x) is a undetermined function for the independent
variables x≡ (x0 = t,x1,x2, · · · ,xm), the projective Ric-
cati equation [27, 28] is defined by

f ′ = p f g, g′ = q + pg2− r f , (2)

where p2 = 1 and q and r are two real constants.
When p = −1 and q = 1, (2) reduces the coupled
equations given in [27] and the following relation be-
tween f and g holds if δ = ±1 and q �= 0:

g2 = − 1
p

[
q−2r f +

r2 + δ
q

f 2
]
. (3)

Equation (3) had been discussed in [28]. In this paper,
we discuss other cases.
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Lemma. If the condition of (3) holds with other
choices of δ , the projective Riccati equation (2) has
the following solutions:

Case 1: If δ =−r2, the Weierstrass elliptic function
solution

f =
q
6r

+
2
pr

℘(ξ ), g =
12℘′(ξ )

q + 12p℘(ξ )
(4)

is admitted. Here p =±1, the Weierstrass elliptic func-
tion ℘(ξ ) =℘(ξ ;g2,g3) satisfies ℘′2(ξ ) = 4℘3(ξ )−
g2℘(ξ )−g3, and g2 = g2

12 , g3 = pq3

216 .

Case 2: If δ = − r2

25 , the projective Riccati equa-
tion (2) has the Weierstrass elliptic function solution

f =
5q
6r

+
5pq2

72r℘(ξ )
, g =− q℘′(ξ )

℘(ξ )(pq + 12℘(ξ ))
, (5)

where p =±1. Both q and r in (4) and (5) are arbitrary
constants.

Case 3: If δ = h2 − s2 and pq < 0, (2) has the soli-
tary wave solution

f =
q

r + scosh(
√−pqξ )+ hsinh(

√−pqξ )
,

g = −
√−pq

p
ssinh(

√−pqξ )+ hcosh(
√−pqξ )

r + scosh(
√−pqξ )+ hsinh(

√−pqξ )
,

(6)

where p = ±1, r, s, and h are arbitrary constants.

Case 4: If δ = −h2 − s2 and pq > 0, (2) has the
trigonometric function solution

f =
q

r + scos
(√

pqξ
)
+ hsin

(√
pqξ

) ,

g =
√

pq
p

ssin
(√

pqξ
)−hcos

(√
pqξ

)
r + scos

(√
pqξ

)
+ hsin

(√
pqξ

) ,

(7)

where p = ±1, r, s, and h are arbitrary constants.

Case 5: If q = 0, (2) has the rational solution

f =
2

prξ 2 +C1ξ −C2
,

g = − 2prξ +C1

(prξ 2 +C1ξ −C2)p
,

(8)

where p = ±1, r, C1, and C2 are arbitrary constants.

We now introduce the mapping approach via the
above projective Riccati equation. The basic ideal of

the algorithm is as follows. For a given nonlinear par-
tial differential equation (NPDE) with the independent
variables x = (x0 = t,x1,x2, · · · ,xm), and the dependent
variable u, has the form

P(u,ut ,uxi ,uxix j , · · · ) = 0, (9)

where P is in general a polynomial function of its ar-
guments, and the subscripts denote the partial deriva-
tives. We assume that its solution is written in terms of
the standard truncated Painlevé expansion, namely

u = A0(x)

+
n

∑
i=1

[Ai(x) f (ξ (x))+Bi(x)g(ξ (x))] f i−1(ξ (x)).
(10)

Here A0(x), Ai(x), Bi(x) (i = 1, · · · ,n) are functions
of x, and f , g satisfy the projective Riccati equation (2).

To determine u explicitly, one proceeds as follow:
First similar to the usual mapping approach, we can
determine n by balancing the highest-order partial dif-
ferential terms with the highest nonlinear terms in (9).
Second, substituting (10) together with (2) and (3) into
the given NPDE, collecting the coefficients of poly-
nomials of f igi and eliminating each of them, we can
derive a set of partial differential equations for A0(x),
Ai(x), Bi(x) (i = 1, · · · ,n) and ξ (x). Third, to calcu-
late A0(x), Ai(x), Bi(x) (i = 1, · · · ,n) and ξ (x), we
solve these partial differential equations. Finally, sub-
stituting A0(x), Ai(x), Bi(x) (i = 1, · · · ,n), ξ (x) and the
solutions (4) – (8) into (10), one obtains solutions of
the given NPDE.

First, let us make a transformation of (1): v = uy.
Substituting this transformation into (1), yields

uyt −uxxy − (u2)xy = 0. (11)

Now we apply the mapping approach to (11). By the
balancing procedure, ansatz (10) becomes

u = F + G f (ξ (x,y, t))+ Hg(ξ (x,y, t)), (12)

where F , G, H, and ξ are arbitrary functions of (x,y, t)
to be determined. Substituting (12) together with (2)
and (3) into (11), collecting the coefficients of the poly-
nomials of f igi (i = 0,1,2 · · · , j = 0,1,2 · · · ) and set-
ting each of the coefficients equal to zero, we can de-
rive a set of partial differential equations for F , G,
H, and ξ . It is difficult to obtain the general solu-
tions of these algebraic equations based on the so-
lutions of (2). Fortunately, in the special case if set-
ting ξ = χ(x, t)+ ϕ(y), where χ ≡ χ(x, t), ϕ ≡ ϕ(y)
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are two arbitrary variable separated functions of (x, t)
and y, respectively, we can obtain solutions of (1).

Case 1. For δ = −r2, the Weierstrass elliptic func-
tion solutions are

u1 =
1
2

χt − χxx

χx
− 1

2
pχxg(ξ ), (13)

v1 =
1
2

prχxϕy f (ξ ), (14)

where p = ±1, f , g are expressed by (4).

Case 2. For δ = − r2

25 , another set of Weierstrass
elliptic function solutions are found

u2=
1
2

χt−χxx

χx
+

1
5

√−6pqrχx f (ξ )
q

− 1
2

pχxg(ξ ), (15)

v2 = −1
5

√−6pqprχxϕy f (ξ )g(ξ )
q

+
6

25
pr2χxϕy f 2(ξ )

q
+

1
2

prχxϕy f (ξ ),
(16)

where p = ±1, q and r are arbitrary constants, f , g are
expressed by (5).

Case 3. For δ = h2 − s2 and pq = −1, the solitary wave solutions are

u3 =
1
2

r(χt − χxx)+ cosh(χ + ϕ)[s(χt − χxx)+ hχ2
x ]+ sinh(χ + ϕ)[h(χt − χxx)+ sχ2

x ]
χx(r + scosh(χ + ϕ)+ hsinh(χ + ϕ))

+
1
2

χx
√

r2 + h2 − s2

r + scosh(χ + ϕ)+ hsinh(χ + ϕ)
,

(17)

v3 =−1
2

χxϕy

[
cosh(χ+ϕ)

(
h
√

r2+h2−s2−sr
)]

[r + scosh(χ + ϕ)+ hsinh(χ + ϕ)]2
− 1

2

χxϕy

[
sinh(χ+ϕ)

(
s
√

r2+h2−s2−hr
)
−s2+h2

]
[r + scosh(χ + ϕ)+ hsinh(χ + ϕ)]2

(18)

with two arbitrary functions χ(x,t) and ϕ(y), while r, s, h are arbitrary constants.

Case 4. For δ = −h2 − s2 and pq = 1, the trigonometric function solutions are

u4 =
1
2

χt − χxx

χx
+

1
2

χx

[√
s2 + h2 − r2 + hcos(χ + ϕ)− ssin(χ + ϕ)

]
r + scos(χ + ϕ)+ hsin(χ + ϕ)

, (19)

v4=−1
2

χxϕy

[
cos(χ+ϕ)

(
h
√−r2+h2+s2 + sr

)]
[r + scos(χ + ϕ)+ hsin(χ + ϕ)]2

− 1
2

χxϕy

[
sin(χ+ϕ)

(
−s

√−r2+h2+s2+hr
)
+s2 + h2

]
[r + scos(χ + ϕ)+ hsin(χ + ϕ)]2

(20)

with two arbitrary functions χ(x,t) and ϕ(y), while r, s, h are arbitrary constants.

Case 5. For q = 0, the rational solutions are

u5 =
1
2

χt − χxx

χx
+

1
2

χx

[
p
√

C2
1 + 4C2 pr + 2pr(χ + ϕ)+C1

]
pr(χ + ϕ)2 +C1(χ + ϕ)−C2

, (21)

v5 = −1
2

χxϕy

[√
C2

1 + 4C2 pr(2p2rχ + 2p2rϕ + pC1)
]

[pr(χ + ϕ)2 +C1(χ + ϕ)−C2]2

− 1
2

χxϕy[2p2r2(χ + ϕ)2 + 2prC1(χ + ϕ)+ 2C2pr +C2
1 ]

[pr(χ + ϕ)2 +C1(χ + ϕ)−C2]2

(22)

with two arbitrary functions χ(x,t) and ϕ(y), while p = ±1, C1, C2, and r are arbitrary constants.
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3. Some Novel Folded Localized Excitations in the (2+1)-Dimensional MDWW System

Due to the arbitrariness of the functions χ(x, t), ϕ(y) included in the above cases, the physical quantities u
and v may possess rich structures. In this section, we mainly discuss some folded localized coherent excitations
in the (2+1)-dimensional MDWW system. For simplicity, we only discuss the field v5 of (22), namely

V = v5 = −1
2

χxϕy

[√
C2

1 + 4C2pr(2p2rχ + 2p2rϕ + pC1)
]

[pr(χ + ϕ)2 +C1(χ + ϕ)−C2]2

− 1
2

χxϕy[2p2r2(χ + ϕ)2 + 2prC1(χ + ϕ)+ 2C2pr +C2
1 ]

[pr(χ + ϕ)2 +C1(χ + ϕ)−C2]2
.

(23)

3.1. Folded Excitations

In order to construct kinds of interesting folded lo-
calized excitations, we introduce some suitable multi-
valued functions [21]. For instance,

χx =
M

∑
j=1

Vj(ε −c jt), x = ε +
M

∑
j=1

Pj(ε −c jt), (24)

where c j ( j = 1,2, · · · ,M) are arbitrary constants, Vj
and Pj are localized excitations with the properties
Vj(±∞) = 0, Pj(±∞) = const. we also treat the func-
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Fig. 1. Two types of folded localized excitation are depicted
for the field V from (23) at time t = 0 with the choices:
(a) χx =−sech2(ε−ct), x = ε−sech(ε−ct), ϕy = sech2(ζ ),
y = ζ − 0.8sech(ζ ); we set p = 1, r = 1, C1 = 2, C2 = 1;
(b) same χx and ϕy with (a), however, x = ε − 0.8tanh(ε −
ct), y = ε − 0.8tanh(ζ ), and using p = 1, r = 1, C1 = 0,
C2 = 1.

tion ϕ(y) in this way,

ϕy =
N

∑
j=1

Uj(ζ ), y = ζ +
N

∑
j=1

Q j(ζ ). (25)

In Fig. 1, two types of folded solitary waves are pre-
sented for the field V determined by (23). The related
functions chosen in the plots are directly given in the
figure captions.

3.2. The Evolution of Folded Solitary Waves

Now we focus our attention on the intriguing evo-
lution of two folded solitary waves for the solution V .
If we choose χ and ϕ to be some appropriate multi-
valued functions, then we find that the interactions
among the folded solitary waves are completely elas-
tic. For instance, if we choose χ and ϕ as

χx = −sech(ε − t)2 −0.7sech(ε + t)2,

x = ε − sech(ε − t)−0.7sech(ε + t),

ϕy = sech(ζ )2, y = ζ −0.7sech(ζ ),

(26)

we can derive the time evolution of the folded solitary
waves for the physical quantity V as presented in Fig. 2
with fixed parameters p = 1, r = 1, C1 = 2, C2 = 1,
at different times: (a) t = −13; (b) t = −8; (c) t = 0;
(d) t = 8; (e) t = 13.

Furthermore, if we choose χ and ϕ as

χx = −sech(ε − t)2 −0.6sech(ε + t)2,

x = ε − tanh(ε − t)−0.6tanh(ε + t),

ϕy = sech(ζ )2, y = ζ −0.6tanh(ζ ),

(27)

we can derive another time evolution of folded solitary
waves for the physical quantity V presented in Fig. 3
with fixed parameters p = 1, r = 1, C1 = 0, C2 = 1, at
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Fig. 2. Evolutional profile of two folded solitary waves for
the solution V defined by (23) with condition (26) at different
times: (a) t =−13; (b) t =−8; (c) t = 0; (d) t = 8; (e) t = 13.

different times: (a) t = −3; (b) t = −2.3; (c) t = −0.8;
(d) t = 0; (e) t = 2.3; (f) t = 3. From Fig. 2 and Fig. 3,
one finds that the interactions of the two folded solitary
waves are completely elastic since their amplitudes,
velocities, and wave shapes do not undergo any change
after their collision.

4. Summary and Discussion

In summary, via the extended mapping approach
and a linear variable separation approach, we find some
new exact solutions of the (2+1)-dimensional modi-
fied dispersive water-wave system. Abundant localized
coherent soliton structures of the solution V of (23)
like dromions, peakons, breathers, instantons, etc., can
be easily constructed by choosing suitable functions.
Except for the single-valued localized excitation we
find a new type of multi-valued localized excitation,
i. e., folded solitary waves and/or foldon excitations for
the (2+1)-dimensional modified dispersive water-wave
system. To our knowledge, the folded solitary waves
and/or foldon excitations for the (2+1)-dimensional
modified dispersive water-wave system have not been
reported in the previous literature. The time evolution
of the two folded solitary waves displayed in Fig. 2
is different from the ones presented in the previous
work.
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Fig. 3. Another evolutional profile of the two folded solitary waves for the solution V defined by (23) with condition (27) at
different times: (a) t = −3; (b) t = −2.3; (c) t = −0.8; (d) t = 0; (e) t = 2.3; (f) t = 3.
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