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The Darboux transformation is applied to a multi-component nonlinear Schrödinger system, which
governs the propagation of polarized optical waves in an isotropic medium. Based on the Lax pair
associated with this integrable system, the formula for the n-times iterative Darboux transforma-
tion is constructed in the form of block matrices. The purely algebraic iterative algorithm is carried
out via symbolic computation, and two different kinds of solutions of practical interest, i. e., bright
multi-soliton solutions and periodic solutions, are also presented according to the zero and nonzero
backgrounds.
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1. Introduction

Integrable nonlinear partial differential equations
(PDEs), such as the Korteweg-de Vries (KdV), sine-
Gordon (SG) and nonlinear Schrödinger (NLS) equa-
tions, have significant mathematical properties and
extensive applications in various fields of physics
and engineering sciences [1, 2]. An important fea-
ture of these integrable PDEs is that they can be ex-
pressed as the compatibility conditions for two lin-
ear differential equations (Lax pair) with a spec-
tral parameter [1]. The well-known Ablowitz-Kaup-
Newell-Segur (AKNS) system gives a systematic pro-
cedure to derive a broad class of integrable non-
linear models and solves their initial value prob-
lems [3]. Considering more additional physical degrees
of freedom, the multi-component nonlinear equations
emerging from generalizations of the one-component
PDEs are used to describe the nonlinear phenom-
ena under certain physical contexts. For example, the
multi-component NLS system generalized from the
scalar NLS equation, governs the dynamics of multi-
component fields in nonlinear optical fibers [4 – 6].
In the mean-field theory of condensation, the multi-
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component Gross-Pitaevskii model describes the time
evolution of the spinor condensate wavefunction in
Bose-Einstein condensates with internal degrees of
freedom [7]. Through generalizing the 2 × 2 linear
eigenvalue problems in [3] to 3 × 3 (even N × N)
cases, many multi-component integrable equations of
physical significance can be derived; for instance, the
modified KdV and NLS equations can be generalized
as [8 – 14]

u jt + 6
( M

∑
k, l=1

Ckl uk ul

)
u jx + u jxxx = 0

( j = 1,2, · · · ,M),

(1)

iq jz + q jtt + 2
( N

∑
k=1

|qk|2
)

q j = 0

( j = 1,2, · · · ,N).

(2)

The above two equations both have an infinite number
of conservation laws and multi-soliton solutions, and
their initial value problems have been solved by the
inverse scattering method [10].



H.-Q. Zhang et al. · Darboux Transformation and Symbolic Computation 301

We present another multi-component system, i. e.,
N-coupled nonlinear Schrödinger (N-CNLS) equations

iq jz + q jtt + 2
(
|q j|2 + 2

N

∑
k=1

|qk|2
)

q j −2
N

∑
k=1

q2
k q∗j = 0

( j,k = 1,2, · · · ,N;k �= j), (3)

which can be used to describe the simultaneous prop-
agation of polarized optical waves in an isotropic
medium [15 – 20], where q j are the varying complex
envelopes of optical modes, the variables z and t, re-
spectively, represent the normalized distance along the
fiber and the retarded time, and the asterisk denotes
the complex conjugate. The last three terms on the
left-hand side of System (3) are the self-phase mod-
ulation, cross-phase modulation, and coherent energy
coupling terms, respectively [18]. This system pos-
sesses the Painlevé property, and its Lax pair and con-
served quantities have been derived [20]. For N = 2,
the multi soliton-solutions have been constructed and
the soliton interaction behaviours have been discussed
by virtue of the Darboux transformation [19]. When
N = 4, the one-soliton solution has been presented with
the Hirota method in [16].

The Darboux transformation, which was first intro-
duced by Darboux in 1882 [21], has been a very pow-
erful tool and widely used in the soliton theory to con-
struct the exact analytical solutions of integrable non-
linear PDEs including soliton solutions, periodic solu-
tions, and rational solutions [14, 22 – 25]. In order to
apply this method, it is necessary to find the linear
eigenvalue problems associated with integrable non-
linear PDEs. Through solving the relevant linear sys-
tem with a given seed solution, with no need to refer
to the special boundary conditions, a series of new an-
alytical solutions can be generated under the Darboux
transformation. By performing the iterative algorithm
of the Darboux transformation successively, one can
obtain the n-times iterated potential transformation for-
mula in terms of the Wronskian determinant [22] or
Vandermonde-like determinant [26].

This paper is devoted to applying the Darboux trans-
formation method to System (3) based on the Lax pair
derived from the matrix AKNS scheme. To make the
iterative algorithm of the Darboux transformation ex-
ercisable, we will employ the computerized symbolic
computation to deal with a large amount of tedious al-
gebraic calculations. In Section 2, we will briefly re-
view the matrix AKNS system and the Lax pair of
System (3) within the framework of block matrices. In

Section 3, we will consider how to construct the Dar-
boux transformation of System (3) and get the formula
of the n-times iterative Darboux transformation. Sub-
sequently, in Section 4 we will in detail give the it-
erative procedure of the Darboux transformation and
construct the bright multi-soliton solutions and peri-
odic solutions. The last section will be our conclusions.

2. Lax Pairs and Reductions

In this section, we review the previous results of [10]
and introduce the AKNS scheme in terms of the block
matrices. Considering the linear eigenvalue problems

Ψt = UΨ = (λ U0 + U1)Ψ and

Ψz = VΨ = (λ 2 V0 + λ V1 + V2)Ψ
(4)

with the block matrices U0,U1,V0,V1,V2 as

U0 = i
( −I1 0

0 I2

)
, U1 =

(
0 Q
R 0

)
, (5)

V0 = 2i
( −I1 0

0 I2

)
, V1 = 2

(
0 Q
R 0

)
,

V2 = i
( −QR Qt

−Rt RQ

)
,

(6)

where Ψ is a vector function, I1 and I2 are, respec-
tively, the p× p and m×m unit matrices, Q and R are,
respectively, the p×m and m× p matrices, λ is the
spectral parameter independent of z and t, the compat-
ibility condition for (4), i. e., the zero-curvature equa-
tion Uz −Vt + [U, V ] = 0, where the brackets denote
the commutator of two matrices, yields the coupled
matrix equations

iQz + Qtt −2QRQ = 0, (7)

iRz −Rtt + 2RQR = 0. (8)

Under the reduction

R = −Q†, (9)

where the sword denotes the Hermitian conjugate,
(7) and (8) reduce to the matrix NLS equation

iQz + Qtt + 2QQ†Q = 0, (10)

from which the multi-component NLS-type systems
are able to be derived according to the different forms
of Q.
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Case I. p = 1, m = 1.
For the simple case Q = q, (10) leads to the standard

NLS equation

iqz + qtt + 2|q|2q = 0. (11)

Case II. p = 1, m = N.
Taking Q = (q1,q2, · · · ,qN), (10) leads to Sys-

tem (2).

Case III. p = 2N−1, m = 2N−1.
If Q is, respectively, chosen as the following forms:

Q2 =
(

q1 q2
−q2 q1

)
2×2

, (12)

Q3 =




q1 q2 q3 0
−q2 q1 0 q3
−q3 0 q1 −q2

0 −q3 q2 q1




4×4

, (13)

Q4 =




q1 q2 0 0 q3 0 q4 0
−q2 q1 0 0 0 q3 0 q4

0 0 q1 q2 −q4 0 q3 0
0 0 −q2 q1 0 −q4 0 q3

−q3 0 q4 0 q1 −q2 0 0
0 −q3 0 q4 q2 q1 0 0

−q4 0 −q3 0 0 0 q1 −q2
0 −q4 0 −q3 0 0 q2 q1




8×8

,

(14)

the 2-CNLS, 3-CNLS and 4-CNLS equations of
System (3) are obtained by substituting (12)−(14)
into (10).

The general expression of QN is the 2N−1 × 2N−1

block matrix

QN =
(

Q1 Q2
Q3 Q4

)
, (15)

where Q j ( j = 1,2,3,4) are all 2N−2 × 2N−2 square-
block matrices, Q1 is a block diagonal matrix, while
Q3 = −QT

2 , Q4 = QT
1 (T denotes the transpose of the

matrix). Q1 and Q2 are given by

Q1 =




A1
A1

O
.. .O A1

A1




,

Q2 =
(

B1 B2
B3 B4

)
,

(16)

where Q2 has the same identities as QN , i.e., B j are all
square-block matrices, B3 = −BT

2 , B4 = BT
1 , while B1

and B2 are expressible in the forms

B1 =




A3
A3

O
.. .O A3


 ,

B2 =




A4 O · · · AN−1 AN
O A4 · · · −AN AN−1
...

...
. . .

...
...

−AN−1 AN · · · A4 O

−AN −AN−1 · · · O A4




,

(17)

A1 =
(

q1 q2
−q2 q1

)
, O =

(
0 0
0 0

)
,

A j =
(

q j 0
0 q j

)
( j = 3,4, · · · ,N).

(18)

It is easy to verify that System (3) can be derived
from (10) with the substitution of (15) – (18).

In terms of Lie algebraic structures, the various re-
ductions of the Lax pair associated with the matrix
NLS equation have been investigated in the litera-
tures [12, 27]. Using the generators of the Clifford al-
gebra, a class of reductions of the matrix NLS equation
were considered in [27]. Many other generalizations
investigated in [12] are associated with the Hermitian
symmetric space.

3. The Darboux Transformation of System (3)

In this section, let us now turn our attention to how
to construct the Darboux transformation of System (3).
We introduce the following transformation:

Ψ [1] = DΨ = (λ I−S)Ψ , (19)

where Ψ is a 2N-dimensional vector function, I is a
2N × 2N unit matrix, and D is called the Darboux ma-
trix. It requires that Ψ [1] should still satisfy the same
linear eigenvalue problems (4):

Ψ [1]t = (λ U0[1]+ U1[1])Ψ [1],

Ψ [1]z = (λ 2 V0[1]+ λ V1[1]+ V2[1])Ψ [1],
(20)

with U0[1],U1[1],V0[1],V1[1],V2[1] having the same
forms as (5) and (6) with Q replaced by Q[1] (q j re-
placed by q j[1]). The compatibility condition Ψ [1]tz =
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Ψ [1]zt yields the following set of equations:

U0[1] = U0, V0[1] = V0, (21)

U1[1]−U1 + SU0 −U0 S = 0, (22)

U1[1] S−SU1 −St = 0, (23)

V1[1]−V1 + SV0 −V0 S = 0, (24)

V2[1]−V2 + SV1 −V1[1]S = 0, (25)

V2[1] S−SV2 −Sz = 0. (26)

From (21) it is shown that the highest components in λ
are invariant under the Darboux transformation.

Note that if S satisfies (22) – (26), the linear eigen-
value problems (4) are invariant after the action of the
Darboux transformation (19). The remaining problem
is to construct the matrix S by virtue of the solutions
of the linear eigenvalue problems (4). However, there
are reduction (9) and constraints among elements in
Q and the Darboux transformation should keep the re-
duction and those constraints. Therefore, it is not easy
to treat the reduced problem. In the 2× 2 AKNS sys-
tem with U(N) reduction, the Darboux transformations
for one-component cases like KdV, SG and NLS equa-
tions have been derived in [22, 23]. Recently, this prob-
lem for some multi-component equations has been dis-
cussed with the aid of the projection operator [14, 24].
Motivated by the previous work, the construction of S
is in the form

S = HΛH−1 =
(

S1 S2
S3 S4

)
,

Λ =
(

λ1 I O
O λ ∗

1 I

)
,

(27)

where H = (Ψ ,Φ),Ψ = (Ψ1,Ψ2, · · · ,Ψ2N−1),Φ =
(Φ1,Φ2, · · · ,Φ2N−1), Ψj and Φ j ( j = 1,2, · · · ,2N−1)
are 2N-dimensional column vectors, S j ( j = 1,2,3,4)
are all 2N−1 × 2N−1 matrices, and I is a 2N−1 × 2N−1

unit matrix.
Back to (22) and (24), S has to satisfy the reduction

condition

S3 = −S†
2. (28)

In what follows, we first present the parts of Ψ for 2-
CNLS, 3-CNLS and 4-CNLS equations for System (3):

Ψ =




ψ1 ψ2
ψ2 −ψ1
ψ3 ψ4
ψ4 −ψ3


, (29)

Ψ =




ψ1 ψ2 ψ3 ψ4
ψ2 −ψ1 −ψ4 ψ3
ψ3 ψ4 −ψ1 −ψ2
ψ4 −ψ3 ψ2 −ψ1
ψ5 ψ6 ψ7 ψ8
ψ6 −ψ5 −ψ8 ψ7
ψ7 ψ8 −ψ5 −ψ6
ψ8 −ψ7 ψ6 −ψ5




, (30)

Ψ =




ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8
ψ2 −ψ1 ψ4 −ψ3 −ψ6 ψ5 −ψ8 ψ7
ψ3 ψ4 −ψ1 −ψ2 −ψ7 −ψ8 ψ5 ψ6
ψ4 −ψ3 −ψ2 ψ1 ψ8 −ψ7 −ψ6 ψ5
ψ5 ψ6 ψ7 ψ8 −ψ1 −ψ2 −ψ3 −ψ4
ψ6 −ψ5 ψ8 −ψ7 ψ2 −ψ1 ψ4 −ψ3
ψ7 ψ8 −ψ5 −ψ6 ψ3 ψ4 −ψ1 −ψ2
ψ8 −ψ7 −ψ6 ψ5 −ψ4 ψ3 ψ2 −ψ1
ψ9 ψ10 ψ11 ψ12 ψ13 ψ14 ψ15 ψ16
ψ10 −ψ9 ψ12 −ψ11 −ψ14 ψ13 −ψ16 ψ15
ψ11 ψ12 −ψ9 −ψ10 −ψ15 −ψ16 ψ13 ψ14
ψ12 −ψ11 −ψ10 ψ9 ψ16 −ψ15 −ψ14 ψ13
ψ13 ψ14 ψ15 ψ16 −ψ9 −ψ10 −ψ11 −ψ12
ψ14 −ψ13 ψ16 −ψ15 ψ10 −ψ9 ψ12 −ψ11
ψ15 ψ16 −ψ13 −ψ14 ψ11 ψ12 −ψ9 −ψ10
ψ16 −ψ15 −ψ14 ψ13 −ψ12 ψ11 ψ10 −ψ9




.

(31)

Similarly, the framework of Ψ for an N-CNLS system
can be obtained inductively by

Ψ =




ψ1 ψ2 · · · ψ2N−1−1 ψ2N−1

ψ2 −ψ1 · · · −ψ2N−1 ψ2N−1−1
...

... · · ·
...

...
ψ2N−1−1 ψ2N−1 · · · −ψ1 −ψ2
ψ2N−1 −ψ2N−1−1 · · · ψ2 −ψ1

ψ2N−1+1 ψ2N−1+2 · · · ψ2N−1 ψ2N

ψ2N−1+2 −ψ2N−1+1 · · · −ψ2N ψ2N−1
...

... · · ·
...

...
ψ2N−1 ψ2N · · · −ψ2N−1+1 −ψ2N−1+2
ψ2N −ψ2N−1 · · · ψ2N−1+2 −ψ2N−1+1




. (32)

The column vectors Ψi are 2N−1 linearly indepen-
dent solutions of the linear eigenvalue problem (4) with
the spectral parameter λi, and the column vectors Φ j
are 2N−1 linearly independent solutions of the linear
eigenvalue problem (4) with λ j replaced by λ ∗

j . At the
same time, the vectors Φ j ( j = 1,2, · · · ,2N−1) have
to satisfy the orthogonality condition 〈Ψi | Φ j〉 ≡ 0
[14, 24].

It is easy to check that S defined by (27) satis-
fies (22) – (26). To this stage, we can draw the conclu-
sion that the linear eigenvalue problems (4) associated
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with System (3) are kept invariant under transforma-
tion (19). From (22) and (24), the relationship between
Q and Q[1] is expressed as

Q[1] = Q−2iS2, (33)

from which we see that the new solution (q1[1],
q2[1], · · · ,qN [1]) is gotten starting from the seed solu-
tion (q1,q2, · · · ,qN).

By applying the Darboux transformation succes-
sively and taking 2N−1 vector solutions of the linear
eigenvalue problems (4) with different spectral param-
eters (λ1,λ2, · · · ,λn), the n-times iteration of the Dar-
boux transformation is in the form

Dn = (λ −S[n])(λ −S[n−1]) · · ·(λ −S[1])

= λ n I+
n−1

∑
j=0

T jλ j,
(34)

Q[n] = Q+ 2i(Tn−1)2,

Tn−1 = −(S[1]+ S[2]+ · · ·+ S[n]),
(35)

where S[k] = H[k]Λk H−1[k] (k = 1,2, · · · ,n), Tn−1 is
a block matrix like S, and its elements are defined
as [19, 23, 28]

(Tn−1)pq =
1

det(Wn)

∣∣∣∣∣∣∣∣∣∣∣

0

Wn
...
0
µq

h(n)
p 0

∣∣∣∣∣∣∣∣∣∣∣
,

Wn =




H1 H2 · · · Hn
H1Λ1 H2Λ2 · · · HnΛn

...
...

...
H1Λ n−1

1 H2Λ n−1
2 · · · HnΛ n−1

n


 ,

(36)

where Λk = diag(λk I,λ ∗
k I), h(n)

p
(
1 � p � 2N

)
is

the p-th row of (H1Λ n
1 ,H2Λ n

2 , · · · ,HnΛ n
n ), and µq(

1 � q � 2N
)

is a 2N-dimensional column vector with
all entries as zero except for the identity element in the
q-th row.

4. Symbolic Computation on the Multi-Soliton
and Periodic Solutions

Although the obvious advantage of the Darboux
transformation is that its iterative algorithm is purely
algebraic and does not include the integral and dif-
ferential calculations, the increase of iterative times

will bring about a large amount of tedious algebraic
calculations which are unmanageable manually. Sym-
bolic computation, as a new branch of artificial intel-
ligence [29], is able to drastically increase the abil-
ity of a computer to exactly and algorithmically deal
with these problems. Combining the iterative algo-
rithm with symbolic computation, the application of
the Darboux transformation to generate new solutions
of System (3) includes the following steps:

(1) Solve the linear system (4) with the given
seed solution (q1,q2, · · · ,qN) and different spec-
tral parameters λm (m = 1,2, · · · ,n), then ob-
tain linear independent column vector solutions
(ψ1[λm],ψ2[λm], · · · ,ψ2N [λm])T .

(2) Substitute the above vector solutions into
Hm[λm], then work out the matrix Tn−1 by performing
symbolic computation on (36).

(3) Symbolically compute the new solutions by
virtue of (35).

In what follows, we will apply the iterative algo-
rithm to construct the bright multi-soliton solutions
and periodic solutions.

4.1. Multi-Soliton Solutions

Taking q j = 0 ( j = 1,2, · · · ,N) as the initial solution
of System (3) and solving the linear system (4), we get

ψl[λm] = clm e−2 iλ 2
m z−iλm t (1 � l � 2N−1), (37)

ψh[λm] = chm e2iλ 2
m z+iλm t (2N−1 +1 � h � 2N), (38)

where clm and chm (m = 1,2, · · · ,n) are all arbitrary
complex constants. According to (35), the explicit rep-
resentation of the n-soliton solution can be obtained.

4.2. Periodic Solutions

Starting from the nontrivial solutions

q j = A j e−iθ , θ = ζ t +
(

ζ 2 −2
N

∑
k=1

A2
k

)
z

( j = 1,2, · · · ,N),
(39)

where A j are arbitrary nonzero real constants, and ζ
is an arbitrary real constant. Based on the investigation
on the one-component NLS equation [22], we consider
the following two cases through solving the linear sys-
tem (4).
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Case I. When the eigenvalues κ1 = κ2 = 0, the char-
acteristic equation is

(ζ −2λ )2 + 4
N

∑
k=1

A2
k = 0, (40)

and

ψl [λm] = [αm t +(ζ + 2λm)αm z+ δm] e−iθ/2

(1 � l � 2N−1),
(41)

ψh[λm] = − ibhm [ (ζ −2λ )δm + χ1m αm]
2 ∑N

k=1 A2
k

eiθ/2

(2N−1 + 1 � h � 2N),
(42)

with

χ1m = ζ 2 z+ζ t−4λ 2
m−2λm t +2i (m = 1,2, · · · ,n),

where bhm are the linear combination of A j ( j =
1,2, · · · ,N) to be determined by solving the linear sys-
tem (4), and αm, δm are arbitrary complex constants.

Case II. When the eigenvalue κ �= 0, the character-
istic equation is

4κ2 +(ζ −2λ )2 + 4
N

∑
k=1

A2
k = 0, (43)

and

ψl [λm] = (β1m eϑ + β2m e−ϑ )e−iθ/2

(1 � l � 2N−1),
(44)

ψh[λm] =
ibhm

(
β1m χ2m eϑ −β2m χ3m e−ϑ)

2 ∑N
k=1 A2

k
eiθ/2

(2N−1 + 1 � h � 2N),
(45)

with

ϑ = κ [(ζ + 2λm)z+ t] ,
χ2m = −ζ + 2λm−2iκ ,

χ3m = ζ −2λm−2iκ ,

(46)

where β1m and β2m are arbitrary complex constants.
The study of the stability of plane waves for the NLS

equation is of particular importance in applications of
nonlinear optics. The exact plane wave solution for fo-
cusing the NLS equation (11) is well-known to be lin-
ear unstable [30, 32]. The detailed procedure of linear
stability analysis of the plane wave solution has been

presented in [30]. Under a similar stability criterion,
it is possible to extend the linear stability analysis to
multi-component NLS equations, and it is found that
the periodic solutions remain unstable.

5. Example: 2-CNLS Equations

In this section, we take System (3) with N = 2 as
an example to construct the bright multi-soliton solu-
tions and periodic solutions according to the iterative
algorithm of the Darboux transformation.

First, we choose Φ1 and Φ2 which are orthogonal to
Ψ1 and Ψ2 as

Φ1 =




ψ∗
3

−ψ∗
4

−ψ∗
1

ψ∗
2


 , Φ2 =




ψ∗
4

ψ∗
3

−ψ∗
2

−ψ∗
1


 . (47)

Then, the matrix S can be expressed as

S =




ψ1 ψ2 ψ∗
3 ψ∗

4
ψ2 −ψ1 −ψ∗

4 ψ∗
3

ψ3 ψ4 −ψ∗
1 −ψ∗

2
ψ4 −ψ3 ψ∗

2 −ψ∗
1




·




λ1 0 0 0
0 λ1 0 0
0 0 λ ∗

1 0
0 0 0 λ ∗

1




·




ψ1 ψ2 ψ∗
3 ψ∗

4
ψ2 −ψ1 −ψ∗

4 ψ∗
3

ψ3 ψ4 −ψ∗
1 −ψ∗

2
ψ4 −ψ3 ψ∗

2 −ψ∗
1




−1

.

(48)

In order to obtain the multi-soliton solutions, we solve
the linear system (4) with the trivial solution q1 =
0,q2 = 0 and obtain

Ψ1[λ1] =




ψ1
ψ2
ψ3
ψ4


 =




c11 e−2 iλ 2
1 z−iλ1 t

c21 e−2 iλ 2
1 z−iλ1 t

c31 e2iλ 2
1 z+iλ1 t

c41 e2iλ 2
1 z+iλ1 t


 , (49)

where c11,c21,c31, and c41 are all arbitrary complex
constants.

By substitution of (49) into (35), the one-soliton so-
lution of system (3) can be generated as

q1 =
4ν1i(λ ∗

1 −λ1)e3ξ1+ξ ∗
1 +η1cosh[ξ1 + ξ ∗

1 + η1]
2ν2e3(ξ1+ξ ∗

1 )+η2cosh[ξ1+ξ ∗
1 +η2]+γ1

, (50)
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Fig. 1. Bright one-peak soliton solutions of System (3) for N = 2 via (33). The related parameters are selected as: c11 = 1,
c21 = 2, c31 = −2, c41 = 4, and λ1 = 0.01− i.
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Fig. 2. Bright two-peak soliton solutions of System (3) for N = 2 via (33). The related parameters are selected as: c11 = 5−3i,
c21 = 2+3i, c31 = 2, c41 = 1− i, and λ1 = 0.01− i.
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Fig. 3. Interaction between two bright solitons of System (3) for N = 2 via (35). The relevant parameters are chosen as:
c11 = 0, c21 = 1, c31 = 1, c41 = 1, λ1 = −5−0.3i, c12 = 0, c22 = 1, c32 = 1, c42 = 1, and λ2 = 5−0.3i.
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Fig. 4. Interaction between two bright solitons of System (3) for N = 2 via (35). The relevant parameters are chosen as:
c11 = 0, c21 = −5−4i, c31 =−6− i, c41 = −6i, λ1 = 2− i, c12 = 0, c22 =−4−4i, c32 =−6− i, c42 =−5i and λ2 =−1+ i.

q2 =
4ν3i(λ1 −λ ∗

1 )e3ξ1+ξ ∗
1 +η3cosh[ξ1 + ξ ∗

1 + η3]
2ν2e3(ξ1+ξ ∗

1 )+η2cosh[ξ1 + ξ ∗
1 + η2]+ γ1

,

(51)

where ν1 = (c2∗
31 + c2∗

41)(c11c31 + c21c41), ν2 = (c2
11 +

c2
21)(c

2∗
11 + c2∗

21), ν3 = (c2∗
31 + c2∗

41)(c21c31 − c11c41),
ξ1 = −2iλ 2

1 z − iλ1 t, e2η1 = (c2
11 + c2

21)(c
∗
11c∗31 +

c∗21c∗41)/ν1, e2η2 =ν2/[(c11c∗11 + c21c∗21)(c31c∗31 +

c41c∗41)+ (c21c∗11 − c11c∗21)(c41c∗31 − c31c∗41)], e2η3 =
(c2

11 + c2
21)(c21c31 − c11c41)/ν3, γ1 = (c2

31 + c2
41)

(c2∗
31 + c2∗

41).
In the following, the evolution of the bright one-

peak soliton in the respective component is shown in
Fig. 1, whilst the bright soliton with two-peak profile
is pictured in Figure 2. The significant interest and dy-
namical behaviours in optical communications for the



H.-Q. Zhang et al. · Darboux Transformation and Symbolic Computation 307

(a)

�200

�100
0

100
200

z

�1.9
�1

0
1

1.9

t

0.45

0.9

�q1�
2

�100
0

100
2

z

(b)

�7 �3 3 7
t

0.2

0.4

0.7

�q1�
2

z�0

(c)

�1000

�500

0
500

1000

z
�10

�5
0

5
10

t

5
10

18

�q2�
2

�500

0
500

z

(d)

�20 �10 10 20
t

5

10

15
�q2�

2

z�0

Fig. 5. Periodic wave solutions of System (3) for N = 2 via (33). (b) and (d) are the plots corresponding to (a) and (c) at z = 0.
The relevant parameters are chosen as: A1 = 1, A2 = −1, κ = 0, ζ = 1, δ1 = 1, α1 = 0, λ1 = 1

2

(
1+2i

√
2
)

, b31 = A1 −A2,
and b41 = A1 +A2.

bright soliton with a two-peak-shaped profile are re-
ported in [19, 33].

With the use of the two sets of basic solutions
(ψl[λ1],ψh[λ1]) and (ψl[λ2],ψh[λ2]) of the linear sys-
tem (4), we can obtain the two-soliton solution of Sys-
tem (3). Figure 3 shows the head-on collision between
two bright one-peak solitons in the respective compo-
nent. They undergo the elastic collision preserving the
respective original shapes and velocities, except for the
visible phase shifts. As seen in Fig. 4, in the first com-
ponent two bright two-peak solitons collide elastically
with each other, while the second component displays
the elastic collisions between two bright one-peak soli-
tons.

Figure 5 shows a family of periodic solutions of
System (3) through one-time iteration of the Darboux
transformation. The multi-soliton solutions on the pe-
riodic background describing periodic modulation of
multi-exultons can be generated by substitution of (44)
and (45) into (35).

6. Conclusions

There has been much interest in integrable multi-
component nonlinear PDEs which can be used to de-
scribe various nonlinear phenomena or mechanisms in
many fields of physical and engineering sciences. In
the present paper, we have shown how the Darboux

transformation is applied to a multi-component non-
linear Schrödinger system governing the simultaneous
propagation of polarized optical waves in an isotropic
medium. Based on the Lax pair derived through the
matrix AKNS system in terms of the block matri-
ces, we have constructed the n-times iterative formula
by applying the Darboux transformation successively.
With the help of symbolic computation, the iterative
algorithm of the Darboux transformation can be eas-
ily carried out via the iterative determinant represen-
tation. We have also constructed the multi-soliton and
periodic solutions of this multi-component system. In
fact, many more complicated explicit solutions of Sys-
tem (3) can be uncovered with the use of the Dar-
boux transformation. In addition, this algebraic itera-
tive algorithm to construct different kinds of solutions
of practical interest is able to be applied to other inte-
grable multi-component equations.
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