
General Diffusivity-Mobility Relationship for Heavily Doped
Semiconductors
Arif Khana and Atanu Dasb,c

a Electrocom Corporation, P.O. Box 60317, Potomac, Maryland 20859-0317, USA
b Department of Physics and Techno Physics, Vidyasagar University, Midnapore 721 102,

West Bengal, India
c Current address: Department of Electronic Engineering, Chang Gung University,

Keei-Shan Tao-Yuan, Taiwan, 333, Republic of China

Reprint requests to A. K.; E-mail: a.khan123@yahoo.com or akhan@electrocom-corp.com

Z. Naturforsch. 64a, 257 – 262 (2009); received December 4, 2007/revised August 12, 2008

A relationship between diffusivity and mobility in degenerate semiconductors is presented. The re-
lationship is general enough to be applicable to both non-degenerate and degenerate semiconductors.
It is suitable for the investigation of the electrical transport in heavily doped semiconductors.
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1. Introduction

Carrier mobilities and diffusivities are integral ele-
ments of the carrier transport in semiconductors [1].
Both of them contribute to the current [2] and de-
pend on the semiconductor band parameters [2 – 6]
such as the energy band gap EG, the non-parabolicity
of the band, and the spin-orbit coupling constants ∆.
Both of them determine the electronic and optoelec-
tronic characteristics of devices [7, 8]. They seem to
depend also on the doping density, the temperature,
the electric field, and the carrier degeneracy [9]. Band
gap narrowing and carrier degeneracy compete with
each other [10] in determining the electrical perfor-
mances of semiconductors. Among these semiconduc-
tors, narrow band gap [1] and wide band gap [6] semi-
conductors exhibit special properties. A better under-
standing of the mobilities and diffusivities of semi-
conductors is increasingly important as the electronic
and optoelectronic devices are increasingly miniatur-
ized and made of heavily doped semiconductor re-
gions. The need to examine their relationship, called
diffusivity-mobility relationship (DMR), also becomes
very important. Being thermodynamically independent
of scattering mechanisms, this relationship is more ac-
curate than the individual relationships between mobil-
ity and diffusivity. During the past years a series of in-
vestigations [11 – 44] has been carried out addressed to
the DMR in semiconductors. For the sake of simplic-
ity, many of these investigations have been confined to
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carrier non-degeneracy, parabolic band structure, and
low temperature limit. Almost all of them are based on
the assumption that the spin-orbit coupling constant ∆
is either much larger or much smaller than the energy
band gap EG. The scope of their applicability is conse-
quently compromised.

Our objective in the current investigation is to
present a general DMR for both lightly and heavily
doped semiconductors exhibiting both parabolic
and non-parabolic band structures, and involving
no approximations as mentioned above. Note that
only electrons and holes in bands near the quasi-
Fermi level of both n- and p-type n-semiconductors
participate in the conduction process of degenerate
semiconductors. Also, these semiconductors do have
strong interband k.p coupling and strong interband
interactions, which result in large spin-splitting Landé
factors [1 – 6]. The diffusivity-mobility relationship
may, therefore, be important for a critical analysis of
the carrier transport in all semiconductor structures,
including semiconductor homostructures [45, 46],
semiconductor/semiconductor heterostructures [47],
metal/semiconductor heterostructures [48 – 51],
metal/insulator heterostructures [52, 53], and insu-
lator/semiconductor heterostructures [54 – 58]. For
example, a change in the DMR under the influence of
doping significantly influences the collector current
and current gain of heterojunction bipolar transis-
tors [47]. The DMR, affected by intermetallic diffusion
in multilayer ohmic contacts [48, 49] and Schottky
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contacts [50], causes modifications of the carrier
transport, for example, in field-effect transistors. The
DMR, influenced by an appropriate choice of the
insulator layer, brings about new functionalities of
metal-insulator-semiconductor (MIS) transistors [54 –
58]. The performances of various devices involving
semiconductors are indeed modified by the carrier
degeneracy and, hence, by the relationship between
carrier mobility and diffusivity.

2. Theoretical Model

Under heavy doping the energy spectrum of elec-
trons in n-semiconductors may assume the form [2 – 6]

h̄2k2

2m∗
e

=
E(E + EG)(E + EG + ∆)(EG + 2∆/3)

EG(EG + ∆)(E + EG + 2∆/3)
, (1)

where E is the total electron energy in the conduction
band of the semiconductor measured from the conduc-
tion band edge EC, m∗

e is the effective electron mass at
the conduction band edge, h is Planck’s constant, and
h̄ = h/2π . If ∆ � EG or ∆ � EG, (1) may be simplified
to [28]

E(1 + β E) =
h̄2k2

2m∗
E
, (2)

where β = 1/EG. Otherwise, (1) may be rewritten in
the form

h̄2k2

2m∗
e

=
λLE(E + EG)(E + EG + ∆)

1 + E/(EG + 2∆/3)
, (3)

where

λL =
3EG + ∆

3EG(EG + ∆)(EG + 2∆/3)
, (4)

is a constant. The relative values of ∆ and EG are quite
different for different semiconductors of different en-
ergy band gaps. For example, for InSb ∆ = 0.803 eV
and EG = 0.235 eV; for InAs ∆ = 0.380 eV and EG =
0.418 eV; for Si ∆ = 0.04 eV and EG = 1.12 eV. This
indicates that for semiconductors with medium and
large energy band gaps, ∆ is generally much smaller
than EG. For these semiconductors (4) may reasonably
be approximated by

λL =
EG

EG(EG + ∆)(EG + 2∆/3)
. (5)

Following Mohammad [59], a simple and reasonably
good approximation for an inverse parameter x may be
given by

1
x

= A1 exp(−a1x)+A2(−a2x)+A3 exp(−a3x), (6)

where A1 = 15.275406, a1 = 6.430790, A2 =
1.728942, a2 = 1.026638, A3 = 0.378220, a3 =
0.137109. As shown in [59], this approximation is
valid for a wide range of x. Further, it involves expo-
nential terms which can be expanded in a Taylor se-
ries without any significant error. We believe that it can
be quite useful to simplify the denominator of (3). So,
making use of (6) one may obtain

1
1 + E/(EG + 2∆/3)

= c1 − c2E, (7)

where

c1 = A1e−a1 + A2e−a2 + A3e−a3 , (8a)

c2 =
a1A1e−a1 + a2A2e−a2 + a3A3e−a3

EG + 2∆/3
. (8b)

With some manipulations, (7) reduces (3) to the form

h̄2k2

2m∗
e

= τ1E + τ2E2 + τ3E3 − τ4E4. (9)

τ1, τ2, τ3, and τ4 of (9) are

τ1 = λLc1EG(EG + ∆), (10a)

τ2 = λL[c1(EG +∆)+EG{c1−c2(EG +∆)}], (10b)

τ3 = λL{c1 − c2(EG + ∆)− c2EG}, (10c)

τ4 = λLc2. (10d)

Equation (9) is a power series equation quite amenable
for an analytical solution of our problem. Performing
differentiation with respect to the energy E , one ob-
tains from (9)

k
(

dk
dk

)
=

m∗
e

h̄2

[
τ1 + 2τ2E + 3τ3E2 −4τ4E3] . (11)

Based on (3) and (7), one may also write

k =

√
2λLm∗

e

h̄2

[
E1/2(E + EG + ∆)1/2

· (c1 − c2E)1/2(E + EG)1/2
]
.

(12)



A. Khan and A. Das · General Diffusivity-Mobility Relationship in Semiconductors 259

If we define the following parameters:

τ5 = [λLc1EG(EG + ∆)]1/2 , (13a)

τ6 =
1

2EG
− c2

2c1
+

1
2(EG + ∆)

, (13b)

τ7 =
c2

4c1(EG + ∆)

+
{

c2

2c1
− 1

2(EG + ∆)

}(
1

2EG

)
,

(13c)

τ8 =
c2

8c1EG(EG + ∆)
, (13d)

we may simplify (12) to

k =

√
2m∗

e

h̄2 τ5E1/2 [
1 + τ6E − τ7E2 − τ8E3] . (14)

The density of states function ρ(E) for electrons in the
conduction band is

ρ(E) =
(

k
π

)2 dk
dE

. (15)

For semiconductors with unperturbed, but simplified,
non-parabolic band structure, ρ(E) reduces readily to

ρ(E) = ρ0(1 + 2β E)E(1 + β E)1/2 (16)

with

ρ0 =
(2m∗

e/h2)3/2

2π2 . (17)

However, if (11) and (14) are taken into consideration,
an expression for the density of states function ρ(E)
may easily be obtained. Equation (15) is then given by

ρ(E) = 4π
(

2m∗
e

h2

)3/2 7

∑
j=1

ξ jE j−1/2, (18)

where the ξi (i = 1,2, . . . ,7) are

ξ1 = τ1τ5, (19a)

ξ2 = τ5 [2τ2 + τ1τ6] , (19b)

ξ3 = τ5 [3τ3 + 2τ2τ6 − τ1τ7] , (19c)

ξ4 = τ5 [−4τ4 + 3τ3τ6 −2τ2τ7 − τ1τ8] , (19d)

ξ5 = −τ5 [4τ4τ6 + 3τ3τ7 + 2τ2τ8] , (19e)

ξ6 = −τ5 [4τ4τ7 + 3τ3τ8] , (19f)

ξ7 = −4τ4τ5τ8. (19g)

In the framework of (18), the electron carrier concen-
tration in n-semiconductors may be expressed by

ne = 4π
(

2m∗
e

h2

)3/2

·
7

∑
j=1

ξ j

∞∫
0

[
E j−1/2

1 + exp[(E −Efe)/kBT ]

]
dE.

(20)

Equation (20) can be written in a compact form in
terms of the Fermi-Dirac integrals ℑ j(ηC) of order j.
The general formula for these Fermi-Dirac integrals
ℑ j(ηC) of order j is

ℑ j(ηC) =
1

Γ ( j + 1)

∞∫
0

z jdz
1 + exp(z−ηC)

, (21)

where ηC is the reduced Fermi level ηC = Efe/kBT , kB
is the Boltzmann constant, and T is the absolute tem-
perature. As shown by Mohammad [10], the reduced
Fermi level ηC is a function of the carrier concentration
ne, which may approximately be equal to the ionized
impurity concentration ND. If NC is the effective den-
sity of states for electrons in the conduction band [60],

NC = 2
[

2πm∗
ekBT

h̄2

]3/2

, (22)

then the relationship between ηC and uC = ND/NC is
obtained as [10]

ηC = log(uC)+
8

∑
ν=0

bνuν
C. (23)

The various parameters bν (ν = 1,2, . . . ,8) of
(23) are given by: b0 = −9.048 · 10−4, b1 =
0.354625, b2 = −4.943417 · 10−3, b3 = 1.194012 ·
10−4, b4 = −1.532784 · 10−6, b5 = 1.274608 · 10−8,
b6 = 0.6851968 · 10−9, b7 = −7.906237 · 10−12, b8 =
3.0173644 ·10−14.

Expressing (17) in terms of Fermi-Dirac integrals,
(21) is expressed by

ne = NC
2√
π

7

∑
j=1

(kBT ) j−1 Γ ( j+
1
2
)ξ jℑi− 1

2
(ηC). (24)

If q denotes the electronic charge, the relation between
the carrier mobility µe and the diffusivity De is

De

µe
=

1
q

(
ne

dne/dEfn

)
(25)
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De

µe
=

(
kBT

q

) ∑7
j=1(kBT ) j−1Γ ( j + 1

2 )ξ jℑ j− 1
2
(ηC)

∑7
j=1(kBT ) j−1Γ ( j + 1

2 )ξ jℑ j− 3
2
(ηC)

.

(26)

Equation (26) is a closed form solution for the DMR of
electrons in semiconductors exhibiting carrier degener-
acy and non-parabolic energy band structures. An anal-
ogous relationship for the DMR of holes may similarly
be derived. An inspection of some earlier reports [18 –
22] on the DMR for semiconductors under a variety of
physical, chemical, structural, magnetic, and electric
conditions indicates that they are often very intractable
and, hence, difficult to follow and hard to grasp. The
fundamental physics is obscured by the complexity of
the mathematics. The present relationships and oth-
ers [14 – 17] obtained by our approach are remarkably
simpler than similar equations by others [18 – 22]. For
degenerate semiconductors with non-parabolic energy
bands (26) reduces to the well-known Einstein equa-
tion

De

µe
=

1
q

(
ne

dne/dEfn

)
=

(
kBT

q

) ℑ−1/2(ηC)
ℑ1/2(ηC)

. (27)

For non-degenerate semiconductors with parabolic en-
ergy bands (26) reduces to

De

µe
=

1
q

(
ne

dne/dEfn

)
=

kBT
q

. (28)

For the sake of convenience, we call it DMR0. The nor-
malized DMR is defined as DMR/DMR0.

3. Results and Discussions

To our knowledge, this is the most general analyt-
ical relationship between µe and De. An analogous
relationship may be obtained for heavily doped p-
semiconductors. Both of them should have significant
impact on the study of carrier transport in devices.
They should also be applicable to both non-degenerate
and degenerate semiconductors irrespective of whether
∆ is comparable to EG, ∆ � EG, or ∆ � EG.

To test the applicability of our model we performed
numerical calculations for silicon. For these calcula-
tions we have made use of (23) and the approximations
for the Fermi-Dirac integrals ℑ j(ηC) given by [61]

ℑ j(ηC) = η j+1
C ∑

ν=1

gν

η(2ν−1)
C

for ηC > 0, (29a)

ℑ j(ηC) = exp(ηC) for ηC < 0, (29b)

Fig. 1. Variation of the DMR values with the doping concen-
tration for electrons in n-Si. Curves 1, 2, and 3 correspond,
respectively, to T = 300 K, 400 K, and 500 K.

Fig. 2. Variation of the DMR values with the doping con-
centration for holes in n-Si. Curves 1, 2, and 3 correspond,
respectively, to T = 300 K, 400 K, and 500 K.

Fig. 3. Variation of the normalized DMR values with alloy
composition z of Hg1−zCdzTe.
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where gν are various parameters given by Van Halen
and Pulfrey [61] in their Table 2. Note that there are
seven of these parameters, corresponding to each value
of j in ℑ j(ηC). Note also that, although approximate,
(29a) and (29b) provide good correspondences with the
exact results for a wide range of the reduced Fermi
level ηC. The use of (29a) and (29b) simplifies, at the
same time, our calculations for the DMR, carrier con-
centration, and other related parameters.

We made use of (26) to carry out calculations on the
effective electron concentration and the DMR of elec-
trons in n-Si and n-Hg1−zCdzTe. These semiconduc-
tors are very widely used for technology development.
The various parameters for n-Si used in our calcula-
tions are: ∆ = 0.044 eV [62], EG = 1.12 eV [60], and
m∗

e = 0.52 [60]. Similar parameters for n-Hg1−zCdzTe
used in the present calculations are [22]:

∆ = 0.63 + 0.24z−0.27z2 eV, (30)

EG = 	−0.302 + 1.93z+ 5.35 ·10−4T (1−2z)

−0.81z2 + 0.832z3
 eV,
(31)

m∗
e(z) =

3h̄2EG

4P2(z)
, (32)

P2(z) =
h2

2m∗
e
[18 + 3z], (33)

where z is the mole fraction of Cd in HgCdTe. The vari-
ation of the DMR for electrons in n-Si and for holes
in n-Si with doping concentration is shown in Figs. 1
and 2, respectively. One may note that the DMR value
increases slowly with doping density until the semi-
conductor reaches degeneracy at ND ≈ 1019 cm−3. In
the degeneracy regime, at ND > 1019 cm−3, the DMR
value increases very rapidly with increasing doping
concentration. Also, the DMR value increases with in-
creasing temperature. The variation of the normalized
DMR with the mole fraction z of n-Hg1−zCdzTe is
shown in Figure 3. For these calculations the doping
concentration was chosen to be 1018 cm−3. Interest-
ingly, the variation is almost linear, and the higher the
mole fraction, the lower is the value of the normalized
DMR.
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