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The oscillatory screening effects on elastic electron-ion collisions are investigated in dense quan-
tum plasmas. The eikonal method with the modified Debye-Hückel potential is employed to obtain
the scattering phase shift and scattering amplitude. In addition, the total elastic collision cross section
is obtained by the optical theorem with the forward scattering amplitude in quantum plasmas. It is
shown that the modified Debye-Hückel screening in quantum plasmas produces the oscillatory be-
haviour of the scattering phase shift. In addition, the minimum position of the phase shift is receded
from the target ion with decreasing the quantum wave number. It is also found that the oscillatory
screening effect suppresses the differential cross section. The total cross section is also found to be
decreased due to the oscillatory screening effect. In addition, it is shown that the total cross section
decreases with an increase of the quantum wave number.
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The electron-ion collision [1, 2] has received much
attention since this is one of the most fundamental
processes and also has wide applications in many ar-
eas of physics. Recently, atomic collision processes
in plasmas have been extensively investigated as use-
ful tools for plasma diagnostics. It has been shown
that the elastic electron-ion collision plays an impor-
tant role in electric conductivity [3] in various plas-
mas. The screened interaction between charged parti-
cles in classical plasmas has been mainly described by
the Yukawa-type standard Debye-Hückel potential [1].
Furthermore, it would be anticipated that the multipar-
ticle correlation effects caused by simultaneous inter-
action of many particles in plasmas should be taken
into account to describe the interaction potential with
an increase of the plasma density. Recently, there has
been a great interest in investigating physical proper-
ties of various quantum plasmas [4, 5]. Moreover, the
quantum plasmas have been found in many nano-scale
objects such as nano-wires, quantum dot, semiconduc-
tor devices as well as in laser-produced dense plas-
mas and also in astrophysical compact objects [6, 7].
Very recently, the modified Debye-Hückel potential in-
cluding the oscillatory behaviour in dense electron-
ion quantum plasmas has been obtained by using the
linear dielectric response formalism [8]. Hence, it is
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expected that the electron-ion collisions in quantum
plasmas would be quite different from those in classi-
cal plasmas. Thus, in the present paper we investigate
the oscillatory screening effects on elastic collisions
in dense electron-ion quantum plasmas. The eikonal
analysis with the modified Debye-Hückel potential is
employed to obtain the scattering phase shift and scat-
tering amplitude. In addition, the differential and total
elastic collision cross sections are obtained by the op-
tical theorem with the forward scattering amplitude in
quantum plasmas.

In the presence of the potential field, the wave func-
tion Ψk(r) can be represented by the following form of
the Schrödinger equation:

( 2 + k2)Ψk(r) = U(r)Ψk(r), (1)

where k [= (2µE/h̄2)1/2] is the wave number, µ is the
reduced mass of the collision system, E (= µυ2/2) is
the collision energy, υ is the collision velocity, h̄ is the
rationalized Planck constant, r is the position vector,
U(r) [≡ (2µ/h̄2)V (r)] is the reduced potential, and
V (r) is the interaction potential. It is essential to in-
vestigate the scattering amplitude in order to obtain
the physical properties of the collision system since
the scattering process would be reduced to the prob-
lem of finding the scattering amplitude using various



238 Y.-H. Koo and Y.-D. Jung · Oscillatory Screening Effects

techniques. Using the eikonal method for the poten-
tial scattering with the free outgoing Green’s function
of the Helmholtz operator ( 2 + k2), G(+)

0 (r,r′) (=
−eik|r−r′|/4π |r− r′|) [9], and the wave function Ψk(r)
in the cylindrical coordinate system such as r = b+zn̂,
where b is the impact parameter, n̂ is the unit vector
perpendicular to the momentum transfer K (≡ kf−ki),
ki and kf are, respectively, the incident and final wave
vectors, the eikonal scattering amplitude [9] is given
by

fE(kf,ki) =−ik
∫ ∞

0
dbbJ0(Kb){exp[iξ (k,b)]−1} ,

(2)

where k ≡ kf = ki for the elastic collision, K =
2k sin(θ/2), θ is the scattering angle between kf and
ki, J0(Kb) is the zeroth-order first kind Bessel func-
tion [10], and ξ (k,b) is the scattering phase shift [9]:

ξ (k,b) = − 1
2k

∫ ∞

−∞
dzU(b,z). (3)

It is known that the optical theorem [11] provides the
general relation between the total cross section of all
collision processes and the imaginary part of the for-
ward scattering amplitude. Hence, according to the op-
tical theorem [11], the total elastic collision cross sec-
tion σel is represented by

σel(k) =
4π
k

Im fE(θ = 0)

= 4π
∫ ∞

0
dbb{1− cos[ξ (k,b)]},

(4)

where Im stands for the imaginary part, and fE(θ = 0)
is the forward scattering amplitude, i. e., if K = 0:

fE(θ = 0) = −ik
∫ ∞

0
dbb{exp[iξ (k,b)]−1}. (5)

Very recently, an excellent work of Shukla and
Eliasson [8] has provided the remarkably useful form
of the modified Debye-Hückel potential of a test charge
in dense electron-ion quantum plasmas by using the
linear dielectric response formalism. Using this effec-
tive screening model [8], the modified Debye-Hückel
interaction potential VMDH(r) between an electron and
an ion with charge Ze in electron-ion quantum plasmas
can be represented by

VMDH(r) = −Ze2

r
exp
(
− kqr√

2

)
cos
(

kqr√
2

)
, (6)

where kq [≡ (4m2ω2
pe/h̄2)1/2] is the quantum wave

number, m is the electron mass, ωpe [= (4πne2/m)1/2]
is the electron plasma frequency, and n is the elec-
tron density. In these quantum plasmas, the Fermi
electron temperature TFe is known to be kBTFe 	
(h̄2/4m)( 2n1/n1), where kB is the Boltzmann con-
stant and n1 is the electron density perturbation [8].
The dielectric function of these quantum plasmas be-
comes εqp = 1 + k4

q/k4 because of the quantum force
term (h̄2/4mn0) ( 2n1), due to the quantum Bohm
potential [12, 13]. In a conventional classical plasma
related to the standard Debye-Hückel potential, the di-
electric function is given by εcl = 1 + k2

D/k2, where
kD is the Debye wave number. As it is seen, that this
modified Debye-Hückel interaction potential [see (6)]
is quite different from the standard Debye-Hückel
screening [3] due to the oscillating part. The oscilla-
tory behaviour of the effective potential is caused by
the singular points of the function (k4 +k4

q)
−1, i. e., the

poles at k2 =±ik2
q, due to the contribution of the quan-

tum Bohm potential term. It is shown that the Fourier
transformation of (k2 ± ik2

q)−1 contains the oscillating
exponential terms [12]. In a recent excellent work of
Brodin et al. [14], a detailed discussion on the param-
eter space for various quantum plasma effects is given.
It is found that the density and temperature range of
quantum plasmas [14] including the Bohm potential
effect are known to be around 1012 – 1021 cm−3 and
100 – 104 K, respectively. Using the modified Debye-
Hückel potential VMDH(r) in the cylindrical coordinate
system, the scattering phase shift can be obtained

ξ (k,b) =
m

h̄2k
Ze2

·
∫ ∞

−∞

dz√
z2 + b2

exp
(
−kq

√
z2 + b2/

√
2
)

· cos
(

kq

√
z2 + b2/

√
2
)

,

(7)

where the radial distance r between the electron and
ion is replaced by r =

√
z2 + b2. After some mathemat-

ical manipulations with a change of the variable such
as z = b

√
t2 −1, the scattering phase shift is found to

be

ξ (k,b) =
m

h̄2k
2Ze2Re

·
∫ ∞

1

dt√
t2 −1

exp
(
−k′qbt/

√
2
)

=
2

kaZ
ReK0

(
k′qb/

√
2
)

,

(8)
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since the integral expression of the second kind mod-
ified Bessel function Kv of order v [10] is given
by Kv(y) = [π1/2/(v − 1/2)!](y/2)v ∫ ∞

1 dpe−yp(p2 −
1)v−1/2 for v > −1/2, where Re stands for the real
value, k′q ≡ kq(1 − i) is the complex quantum wave
number, i is the pure imaginary number, aZ (= a0/Z)
is the Bohr radius of the hydrogen ion with nuclear
charge Ze, and a0 (= h̄2/me2) is the Bohr radius of
the hydrogen atom. If we use the standard Debye-
Hückel potential VDH(r) [= (−Ze2/r)exp(−kqr/

√
2)]

in quantum plasmas without including the oscillating
factor, the scattering phase shift ξ ′(k,b) becomes

ξ ′(k,b) =
2

kaZ
K0(kqb/

√
2). (9)

The total cross section σel(Ē) in units of πa2
Z for the

elastic electron-ion collision including the oscillatory
screening effects in quantum plasmas is then found to
be

σel(Ē)
πa2

Z
= 4

∫ ∞

0
db̄ b̄

{
1− cos

[
2√
Ē

ReK0

(
k̄′qb̄√

2

)]}
,

(10)

where b̄ (≡ b/aZ) is the scaled impact parameter,
Ē (≡ E/Z2Ry) is the scaled collision energy, Ry (=
me4/2h̄2 ≈ 13.6 eV) is the Rydberg constant, and
k̄′q(≡ k′qaZ) = k̄q(1− i). In addition, the differential to-
tal cross section dσel/db̄ is given by

dσel(Ē)
πa2

Zdb̄
= 4b̄

{
1− cos

[
2√
Ē

ReK0

(
k̄′qb̄√

2

)]}
. (11)

However, if oscillatory screenings are absent in quan-
tum plasmas, the total σ ′

el and differential dσ ′
el/db̄ elas-

tic electron-ion collision cross sections are, repectively,
represented by

σ ′
el(Ē)
πa2

Z
= 4

∫ ∞

0
db̄ b̄

{
1− cos

[
2√
Ē

K0

(
k̄qb̄√

2

)]}
, (12)

dσ ′
el(Ē)

πa2
Zdb̄

= 4b̄
{

1− cos
[

2√
Ē

K0

(
k̄qb̄√

2

)]}
. (13)

In order to explicitly investigate the oscillatory
screening effects on the elastic collision process in
dense electron-ion quantum plasmas, we set Ē > 1
since the eikonal formalism is known to be valid for
υ > Zαc [7], where α (= e2/h̄c ∼= 1/137) is the fine

Fig. 1. The eikonal scattering phase shift ξ of the elastic
electron-ion collision in quantum plasmas as a function of
the scaled impact parameter b̄ for Ē = 20 and k̄q = 2. The
solid line represents the phase shift ξ obtained by the mod-
ified Debye-Hückel potential. The dotted line represents the
phase shift ξ ′ obtained by the standard Debye-Hückel poten-
tial.

Fig. 2. The eikonal scattering phase shift ξ obtained by the
modified Debye-Hückel potential as a function of the scaled
impact parameter b̄ for Ē = 20. The solid line is the result
for k̄q = 2, the dashed line for k̄q = 4, and the dotted line
for k̄q = 6.

structure constant and c is the velocity of light. Fig-
ure 1 represents the comparison between the scatter-
ing phase shifts ζ obtained by the modified Debye-
Hückel screening and by the standard Debye-Hückel
screening as a function of the scaled impact param-
eter b̄. As shown, the phase shift obtained by the
standard Debye-Hückel screening monotonically de-
creases with an increase of the impact parameter. How-
ever, the phase shift obtained by the modified Debye-
Hückel screening shows a minimum position which
cannot be found in the case of the standard Debye-
Hückel screening. Figure 2 shows the phase shift ξ
obtained by the modified Debye-Hückel screening as
a function of the scaled impact parameter b̄ for various
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Fig. 3. The surface plot of the oscillatory screening effect FOS
on the differential cross section as a function of the scaled
quantum wave number k̄q and scaled impact parameter b̄
for Ē = 20.

Fig. 4. The total scaled cross section σ̄el of the elastic
electron-ion collision in quantum plasmas as a function of the
scaled collision energy Ē for k̄q = 2. The solid line represents
the total scaled cross section σ̄el obtained by the modified
Debye-Hückel potential. The dotted line represents the total
cross section σ̄ ′

el obtained by the standard Debye-Hückel po-
tential.

values of the quantum wave number k̄q. It is shown
that the minimum position of the scattering phase shift
has receded from the target ion with decreasing the
quantum wave number. Figure 3 represents the oscil-
latory screening effect FOS [≡ (dσel/db̄)/(dσ ′

el/db̄)]
on the differential collision cross section as a func-
tion of the scaled quantum wave number k̄q and the
scaled impact parameter b̄. As it is seen, the oscil-
latory screening effect sinusoidally decreases with an
increase of the quantum wave number and impact
parameter. Figure 4 shows the comparison between
the total scaled cross section σ̄el in units of πa2

Z ob-
tained by the modified Debye-Hückel potential and by

Fig. 5. The total scaled cross section σ̄el obtained by the mod-
ified Debye-Hückel potential as a function of the scaled col-
lision energy Ē. The solid line is the result for k̄q = 2, the
dashed line for k̄q = 3, and the dotted line for k̄q = 4.

the standard Debye-Hückel potential as a function of
the collision energy Ē . It is shown that the oscilla-
tory screening effect suppresses the total cross sec-
tion and also decreases with an increase of the col-
lision energy. In addition, Fig. 5 represents the to-
tal scaled cross section σ̄el (≡ dσel/πa2

z ) obtained by
the modified Debye-Hückel screening as a function
of the scaled collision energy Ē for various values of
the quantum wave number k̄q. It is also shown that
the total cross section decreases with an increase of
the quantum wave number. Hence, we find that an in-
crease of the plasma frequency of the quantum plasma
suppresses the total elastic electron-ion collision cross
section.

In this work, we have found that the oscillatory
screening behaviour caused by the quantum Bohm ef-
fect plays an important role in collision processes in
quantum plasmas. Hence, the use of the accurate in-
teraction potential is essential for the evaluation of the
precise cross sections for various collision and radia-
tion processes in plasmas. These results would provide
useful information on the quantum screening effects of
various atomic collision processes in dense quantum
plasmas.
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