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The effects of neutral particle collisions on the quantum interference in electron-electron collisions
are investigated in collisional plasmas. The effective potential model taking into account the electron-
neutral particle collision effects is employed in order to obtain the electron-electron collision cross
section including the total spin states of the collision system. It is found that the collision effects sig-
nificantly enhance the cross section. In addition, the collision-induced quantum interference effects
are found to be significant in the singlet spin state. It is shown that the quantum interference effects
decrease with increasing the thermal energy of the plasma. It is also shown that the quantum interfer-
ence effects increase with an increase of the collision energy.
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Electron collisions [1 – 3] have received much at-
tention since this process is one of the major physical
processes in plasmas. It has been known that electron-
electron collisions make contributions to the collec-
tive effects on the conductivity and to the electron-
ion bremsstrahlung emission spectrum in plasmas [4].
In weakly coupled thermal plasmas, the screened
interaction potential has been characterized by the
Yukawa-type Debye-Hückel model [5] obtained by lin-
earization of the Poisson equation with the Maxwell-
Boltzmann velocity distribution. In addition, it has
been shown that the far-field interaction potential in
collisional plasmas may fall off as 1/r2 [6, 7], where
r is the distance between the collision particles, due
to the influence of collisions with neutral particles.
Therefore, electron-electron interactions in collisional
plasmas would be different from those in collision-
less plasmas due to the influence of collisions with
neutral atoms. Thus, in the present paper we con-
sider the effects of electron-neutral particle collisions
and the quantum interference on electron-electron col-
lisions in collisional plasmas. The effective poten-
tial model [8] including the additional terms due to
electron-neutral particle collisions apart from the con-
ventional Debye-Hückel screening part is applied to
describe the screened electron-electron interactions in
collisional plasmas. Moreover, the direct and exchange
scattering amplitudes due to the total spin states of the
collision system are considered to obtain the electron-
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electron collision cross section as a function of the col-
lision angle, collision energy, collision frequency, De-
bye length, and thermal energy.

For collisions in a potential field V (r), the differ-
ential elastic collision cross section dσ per unit solid
angle dΩ is represented by [9, 10]

dσ
dΩ

= | f (k,k′)|2, (1)

where f (k,k′) is the scattering amplitude, k and k′ are,
respectively, the wave vectors of the incident and scat-
tered waves. In the first-order Born approximation [3],
the scattering amplitude is given by

f (k,k′) =− µ
2π h̄2

∫
d3rexp[i(k−k′) ·r]V (r), (2)

where µ is the reduced mass of the collision system.
The Born method is known to be reliable to provide
a sufficiently accurate qualitative description of colli-
sion cross sections for weak interaction potentials, i. e.,
|V |d/h̄υ0 � 1 [3], where |V | is the typical strength of
the potential, d is the range of the interaction potential,
and υ0 is the collision velocity. The useful analytical
form of the effective screened potential [8] of a mov-
ing test charge in a warm collisional plasma has been
obtained by the Poisson equation and plasma dielec-
tric function D(k,ω) [= 1−ω2

p(ω(ω + iv)−k2υ2
T )−1],

where ωp [= (4πne2/m)1/2] is the plasma frequency,
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n is the electron number density, m is the mass of the
electron, v is the collision frequency due to electron-
neutral particle collisions, and υT [= (kBT/m)1/2] is
the thermal velocity, kB is the Boltzmann constant, and
T is the plasma temperature. Using the effective po-
tential model [8], we obtain the electron-electron in-
teraction potential V (r,z) for all ranges of r including
the additional terms due to the influence of electron-
neutral particle collisions in warm collisional plasmas,
if the collision velocity υυυ0 (= υ0ẑ) is comparable but
smaller than the thermal velocity υT and vz < υT , i. e.,
the collision frequencies are small:

V (r,z) =
e2

r
e−r/λD

+
e2z
r

vυ0λD

υ2
T

[(
1
r

+
1

2λD
+

λD

r2

)
e−r/λD − λD

r2

]
,

(3)

where λD [= υT /ωp = (kBT/4πne2)1/2] is the
Debye length. This effective interaction poten-
tial encompasses the several additional terms due

to electron-neutral particle collisions apart from
the standard Debye-Hückel shielding potential
(e2/r)e−r/λD since the Poisson equation for the
electrostatic potential φ [8] for a test charge qt in a
warm collisional plasma would be given by 2φ =
(qt/λ 2

D)(e−r/λD/r)[1 + (vυ0z/2υ2
T )] − 4πqtδ (r),

where δ (r) is the delta function. Here, the electron-
electron collision itself is assumed to be unaffected
by collisions with neutral particles. After some
mathematical manipulations in the cylindrical co-
ordinates r = ρρ̂ρρ + zẑzz with ρ̂ρρ · ẑzz = 0, the scattering
amplitude f (K) for the electron-electron collision in
collisional plasmas is found to be

f (k) = − µ
2π h̄2 I(K), (4)

where K [≡ |k−k′| = 2k sin(Θ/2)] is the momentum
transfer, |k| = |k′| ≡ k, Θ is the scattering angle be-
tween the incident and scattered directions measured
in the center of the mass system, and the integral func-
tion I(K) is represented by

I(K) = 2πe2
∫ ∞

0
dρρ

∫ ∞

−∞
dzeiKz

{
1

(ρ2 + z2)1/2 e−(ρ2+z2)1/2/λD

+
vυ0λD

υ2
T

[(
z

ρ2 + z2 +
z

2λD(ρ2 + z2)1/2 +
zλD

(ρ2 + z2)3/2

)
e−(ρ2+z2)1/2/λD − zλD

(ρ2 + z2)3/2

]}

= 4πe2λD

∫ ∞

0
dz

[
e−z/λD cos(Kz)− i

vυ0λD

υ2
T

(
z

2λD
e−z/λD + e−z/λD −1

)
sin(Kz)

]
.

(5)

After some algebra, the scattering amplitude f (K̄) is
then obtained as follows:

f (K̄) = −a0λ̄ 2
D

{
1

1 +(K̄λ̄D)2

−i
v̄υ0λ̄D

υT

[1 + 4(K̄λ̄D)2 + 2(K̄λ̄D)4]
(K̄λ̄D)[1 +(K̄λ̄D)2]2

}
,

(6)

where K̄ ≡ Ka0 is the scaled momentum transfer, a0
(= h̄2/me2) is the first Bohr radius of the hydrogen
atom, λ̄D (≡ λD/a0) is the scaled Debye length, and
v̄ (≡ va0/υT ) is the scaled collision frequency. For
the identical particle collisions, the projectile parti-
cle would not be distinguished from the target parti-
cle due to the indistinguishability of identical quan-
tum particles. Hence, in addition to the direct scat-
tering amplitude fd(Θ), the exchange scattering am-
plitude fex(π −Θ) has also to be considered in eval-

uating the total electron-electron collision cross sec-
tion. Since the two-electron system would be in the
spin-antisymmetric state (singlet state) and in the spin-
symmetric state (triplet state), the differential elas-
tic electron-electron collision cross section dσ in the
centre-of-mass (CM) system is given by the contribu-
tions of the singlet and triplet spin states [9]:(

dσ
dΩ

)
CM

=
1
4
| fd(Θ)+ fex(π −Θ)|2

+
3
4
| fd(Θ)− fex(π −Θ)|2

= | fd(Θ)|2 + | fex(π −Θ)|2

−Re[ fd(Θ) f ∗ex(π −Θ)],

(7)

where the direct scattering amplitude fd(Θ) represents
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the incoming electron scattered into the direction Θ in
the centre-of-mass system, the exchange scattering am-
plitude fex(π −Θ) represents the scattering into the di-
rection π −Θ , Re represents the real part of the prod-
uct of the scattering amplitudes, * stands for the com-
plex conjugate, and Re[ fd(Θ) f ∗ex(π −Θ)] represents
the quantum interference effects due to the total spin
states of the collision system. From (7), it can be un-
derstood that the scattered electrons for the scattering
angle Θ = π/2 would be in the singlet spin state since
the triplet spin state vanishes at Θ = π/2. It has been
shown that the relation between the differential elastic
cross section for the identical particle collisions in the

laboratory system (L) and that in the centre-of-mass
system is represented by the expression [11][

dσ(θL)
dΩ

]
L

= 4cosθL

[
dσ(Θ)

dΩ

]
CM

, (8)

where θL (= Θ/2) is the scattering angle in the lab-
oratory system. After some algebra, the differential
cross section (dσ/dΩ)L in units of πa2

0 for the elastic
electron-electron collisions in the laboratory system in-
cluding the effects of the electron-neutral particle col-
lisions and quantum interference in collisional plasmas
is found to be

(
dσ
dΩ

)
L
/πa2

0 =
cosθL

π
λ̄ 4

D

{[
1

(1 + 2Ēλ̄ 2
D sin2 θL)2

+
4v̄2Ēλ̄ 2

D
ĒT

(1 + 2Ēλ̄ 2
D sin2 θL + Ē2λ̄ 4

D sin4 θL/2)2

(
√

2Ē1/2λ̄D sin θL)2(1 + 2Ēλ̄ 2
D sin2 θL)4

]

+

[
1

(1 + 2Ēλ̄ 2
D cos2 θL)2

+
4v̄2Ēλ̄ 2

D
ĒT

(1 + 2Ēλ̄ 2
D cos2 θL + Ē2λ̄ 4

D cos4 θL/2)2

(
√

2Ē1/2λ̄D cosθL)2(1 + 2Ēλ̄ 2
D cos2 θL)4

]

−
[

1
(1 + 2Ēλ̄ 2

D sin2 θL)
1

(1 + 2Ēλ̄ 2
D cos2 θL)

−4v̄2Ēλ̄ 2
D

ĒT
· 1 + 2Ēλ̄ 2

D sin2 θL + Ē2λ̄ 4
D sin4 θL/2√

2Ē1/2λ̄D sin θL(1 + 2Ēλ̄ 2
D sin2 θL)2

· 1 + 2Ēλ̄ 2
D cos2 θL + Ē2λ̄ 4

D cos4 θL/2√
2Ē1/2λ̄D cosθL(1 + 2Ēλ̄ 2

D cos2 θL)2

]}
,

(9)

where Ē ≡ E/Ry, E (= µυ2
0 /2) is the collision energy,

Ry (= me4/2h̄2 ≈ 13.6 eV) is the Rydberg constant,
ĒT ≡ ET /Z2Ry, and ET (= kBT ) is the thermal energy.

Fig. 1. The scaled differential elastic electron-electron colli-
sion cross section (dσ̄/dΩ)L in units of πa2

0 in the laboratory
system as a function of the scattering angle θL in units of ra-
dians for E = 136 eV, T = 3.2 ·106 K, and n = 5.3 ·1026 m−3.
The dotted line represents the case of v̄ = 3 · 10−2. The
dashed line represents the case of v̄ = 6 ·10−2. The solid line
represents the case of v̄ = 10−1.

Figure 1 represents the scaled differential elastic
electron-electron collision cross section (dσ̄/dΩ)L [≡
(dσ/dΩ)L/πa2

0] in units of πa2
0 in the laboratory sys-

tem including the effects of neutral particle collisions

Fig. 2. The surface plot of the quantum interference effect
Q(θL, v̄) as a function of the scattering angle θL in units of
radians and the scaled collision frequency v̄ for E = 136 eV,
T = 3.2 ·106 K, and n = 5.3 ·1026 m−3.
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Fig. 3. The surface plot of the quantum interference effect
Q(ĒT , Ē) as a function of the scaled thermal energy ĒT and
the scaled collision energy Ē for θL = π/4, v̄ = 10−3, n =
5.3 ·1026 m−3, and T = 3.2 ·106 K.

and quantum interference in collisional plasmas as a
function of the scattering angle θL in units of radians.
As it is seen, the collision effects due to neutral par-
ticles significantly enhance the collision cross section.
Figure 2 shows the surface plot of the quantum inter-
ference effect Q(θL, v̄) [≡ (dσ/dΩ)L/(dσ ′/dΩ)L] as
a function of the scattering angle θL and the scaled
collision frequency v̄, where (dσ ′/dΩ)L is the differ-
ential elastic electron-electron collision cross section
without the effect of the quantum indistinguishability.
From this figure, it is found that the quantum interfer-
ence effects are quite significant near the scattering an-

gle θL = π/4, i. e., in the singlet spin state of the col-
lision system. In addition, Fig. 3 represents the surface
plot of the quantum interference effect Q(ĒT , Ē) as a
function of the scaled thermal energy ĒT and the scaled
collision energy Ē . As shown, it is found that the quan-
tum interference effects on the cross section decrease
with increasing thermal energy. It is also shown that the
quantum interference effects increase with an increase
of the collision energy.

Hence, we have found that the effects of neutral
particle collisions and quantum interference play im-
portant roles in electron-electron collisions in plasmas.
Therefore, the quantum interference effects should be
appropriately included in the estimations of the correct
collision cross sections and reaction rates in plasmas.
These results provide useful information on the effects
of neutral particle collisions and quantum interference
on the collisions of quantum indistinguishable parti-
cles in collisional plasmas.
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