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The variable-coefficient two-dimensional Korteweg-de Vries (KdV) model is of considerable sig-
nificance in describing many physical situations such as in canonical and cylindrical cases, and in the
propagation of surface waves in large channels of varying width and depth with nonvanishing vor-
ticity. Under investigation hereby is a generalized variable-coefficient two-dimensional KdV model
with various external-force terms. With the extended bilinear method, this model is transformed into
a variable-coefficient bilinear form, and then a Bicklund transformation is constructed in bilinear
form. Via symbolic computation, the associated inverse scattering scheme is simultaneously derived
on the basis of the aforementioned bilinear Bécklund transformation. Certain constraints on coef-
ficient functions are also analyzed and finally some possible cases of the external-force terms are

discussed.
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1. Motivations for a Generalized Variable-
Coefficient Two-Dimensional Korteweg-de
Vries Model with Various External-Force Terms
from Shallow Water Waves, Plasma Physics, and
Fluid Dynamics

Among the most important models of nonlin-
ear evolution equations (NLEESs), constant-coefficient
Korteweg-de Vries (KdV) and KdV-type equations are
encountered in many apparently unrelated phenomena
in different physical areas such as shallow water waves,
plasmas, fluids and lattice vibrations of a crystal at
low temperatures [1]. In all of these applications, the
physical situations described via the KdV (or KdV-
type) models tend to be highly idealized, owing to the
assumption of constant coefficients. Considering the
inhomogeneities of media, nonuniformities of bound-
aries and external forces, the variable-coefficient mod-
els are much more powerful and realistic than their
constant-coefficient counterparts in describing various

situations, e. g., in the coastal waters of oceans, space
and laboratory plasmas, superconductors and optical-
fiber communications [2-6].

In the past decades, it has been shown that various
physical phenomena in nature, actual physics and en-
gineering can be described by the variable-coefficient
KdV model with perturbed, dissipative and external-
force terms as [7]

v+ 1 (8)vvy + U () Viex
+ pa(t) vy + Ha(t)y = us(t),

where v(x,t) is a function of the variables x and ¢,

w1(0) # O, (1) # 0, p3(¢). pa(r) and pis (1) represent
the coefficients of the nonlinear, dispersive, dissipative,
perturbed and external-force terms, respectively, all of
which are real functions. In recent studies, of physi-
cal and mechanical interests, many important examples
of (1), among others, can be listed [8]:

o B +h(t)PD,+g(t)Prx =0, )
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o WHI(N)PYAmt) P +n()¥ =0, (3)

o Q+p(t)RQ+q(t) R
+7r(1)Q+5()2 =0.
Note that, if we set

“4)

w(t) =6, mw(t)=1, us(r)==
pa(t) = ps(t) =0,

then one important case of (1), the celebrated cylindri-
cal KdV equation [9, 10], is obtained as

vt+6vvx+vxxx+%v:0. &)

On the other hand, it is of great interest to extend
the KdV model to higher dimension, e. g., to the two-
dimensional KdV model (also called the Kadomtsev-
Petviashvili model), which has many physical appli-
cations from water waves to field theories, plasma
physics and fluid dynamics [10, 11]. What’s more,
the variable-coefficient generalizations of the two-
dimensional KdV model [6,12-15] are considered
to be more realistic in modeling physical situa-
tions. Arising from various branches of physics,
some important variable-coefficient generalizations of
the two-dimensional KdV models can be seen be-
low [12,14,15]:

o [Vi+m(t)V+my(t)V Vi+m3(t)Vix)x 6)

+my()Vyy +ms(t) =
o [U+6UUi+ Ul +x(1)Ui+v(t)Uy, =0, (7)
L4 [VVI+WWx+Wxxx}x"’nl(yat)wx'f'nZ(yat)W/y

(3)
+ ”3()’>t)VVyy + n4(y,t)ny + n5(y>t)Wxx =0.
It is clear that, if we set
1
my(t) = 7 my(t) =6, ms(t)=1, ms(t)=0,
302
m4(t) = t—2 with 62 ==+1
in (6), the celebrated cylindrical Kadomtsev-
Petviashvili equation [10, 16] is obtained as
1 302
Vi +6VVi+ Viulr + z—tvx+ t—zvyy =0. (9

Generally speaking, the considerable significance
of the variable-coefficient KdV and two-dimensional
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KdV models mainly lies in: (A) the models arise in
many physical applications including shallow water
waves, plasma physics, and fluid dynamics and are
able to describe various situations more powerful than
their constant-coefficient counterparts; (B) the investi-
gations on the approaches and techniques to manage
the models are various and of great interest; (C) the
mathematical interest is whether the models are inte-
grable or not.

Nowadays, there has been a growing interest in
studying variable-coefficient NLEEs [4,15,17-19],
which provide a large family of powerful models for
describing the real-world situations in many fields of
physical and engineering sciences. Considering the
inhomogeneities of media, nonuniformities of bound-
aries and external forces, we hereby investigate a
generalized variable-coefficient two-dimensional KdV
model with external-force term [12]:

[y + Outy + U] + a(t)uy

+b(t)uyy + Fe(x,y,1) =0, (10
where u(x,y,t) is a function of the variables x, y and ¢,
a(r) and b(t) depend only on the variable 7, while the
external-force term, Fy(x,y,7), depends on the vari-
ables x, y and ¢.

It can be seen that the introduction of variable-
coefficient functions into the NLEEs usually gives rise
to many difficulties in the investigations [2—7, 12, 15]
owing to the involvement of a great amount of inte-
gral and differential calculations which are manually
unmanageable. With the development of computer sci-
ence and technology, symbolic computation as a new
branch of artificial intelligence drastically increases
the ability of a computer to deal with the compli-
cated and tedious calculations of the coefficient func-
tions in the NLEEs under investigation. In soliton the-
ory, the computerized symbolic computation system
like MATHEMATICA or MAPLE [17 —22] has been
playing a more and more important role in analyt-
ically investigating NLEEs, such as, transforming a
wide class of variable-coefficient models to the stan-
dard ones [17, 18], constructing exact analytical solu-
tions [17, 19, 22] (including the solitonic solutions, pe-
riodic solutions, rational solutions and so on), and test-
ing the integrability of NLEEs [17,20, 21].

By means of the symbolic computation system
MATHEMATICA, in the present paper, we will ex-
tend and perform the bilinear method which has been
shown to be powerful in application of constant-
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coefficient NLEEs to a variable-coefficient equation,
i.e., (10).

2. Symbolic Computation Study of (10) with the
Extended Bilinear Method

Hirota’s bilinear method has been extensively stud-
ied and widely used [2,4,23,24]. The fundamental
idea behind the method is using a suitable depen-
dent variable transformation (DVT) to put the original
NLEE in a form where the new dependent variable ap-
pears bilinear. Once the bilinear form of the equation is
found, one may employ the perturbation technique to
construct its solution step by step. If soliton solutions
exist this expansion will always truncate and then finite
series will lead to an exact solution. Many perfect soft-
ware packages available for the bilinear method have
already been proposed see [21] for details.

2.1. Variable-Coefficient Bilinear Form

Substituting the DVT: u(x,y,t) = 2[Log f(x,y,1)]xx
into (10), integrating twice with respect to x, and taking
the integration constants as zero, we get the variable-
coefficient bilinear form of (10) as

[D.D; + D} +b(t)D; + a(t)0x
+ ZF(X,)’J)] (ff) = Oa

where the binary operators Dy, D; and Dy, [23,24] are
defined by

9 a\"/9 9\
mpkpnig . _ = _ -
DDy (6-p) <3x 3X’> <3y ay’)

9 J\” A,
<E—y) G(X,y»f)P(x»yvt)

(11)

X=xy=yi'=t

2.2. Construction of the Bilinear Bdicklund
Transformation Based on (11)

With the help of symbolic computation, now we be-
gin to construct a bilinear Biacklund transformation be-
tween f and g, both of which are assumed to be two
different solutions of (11) [simultaneously be solutions
of (10) through the aforementioned DVT], by consid-
ering [2, 4, 24]

0=P = f*[DD; + D} +b(t)D; +a(t)ox
+2F (x,,1)|(g - g) — §*[D+Ds + D}
+b(1)D} + a(t)dy + 2F (x,y,0)(f - f)
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=2D,[Dy(g- f)- (8f)] +2D:[D(g- f)- (¢f)]
+6D,[D3(g- f) - Dx(f - )]
+2b(t)Dy[Dy(g - f) - (81)]
+Dx{la(t)xDx(g- f)] - (gf)

—la(r)xgf]-Dx(f-8)}- (12)
Taking into account: Dy[D%(g - f) - (gf)] =
Dy{[DDy(g- /)]~ (8f)} + Di{[Dy(g- /)] [Dx(g- )]}

we can add +6B(1)Dy[D(g - f) - (gf)] — 6B(t) -
Dy[D2(g - f) - (gf)] with B(t) # 0 as an arbitrary
function of 7 to (12) and obtain

pP=
Dy{[2D, + 2D} + 6B(t)DxDy + a(t)xDy] (g - ) - (2f)}
+D{[6D; — 6B(1)Dy —a(t)x](g - f) - [D:(f - )]}
+Dy{[—6B(t)D§(g'f) +2b(t)Dy(g - f)

+k(t)xgf]- (gf)},

where the arbitrary function k(¢) has been introduced.

To this stage, with three decoupling functions y(7),
A(t) and p(y,t), all of which are arbitrary, equation
splitting indicates that

[—6B(1)D; +2b(t)Dy+k(t)x](g - f) = 2 (t)gf, (13)

[6D; — 6B(1)Dy —a(t)x](g- f) = A1)gf,
(2D, 42D} 4 6B(t)DyDy + a(t)xDy + A (t)Dy)(g - f)
=p1)gf. (15)

It is obvious that once g and f satisfy (13), (14)
and (15), then P = 0. Accordingly, it is reasonable to
treat the set of (13), (14) and (15) as a formally gener-
alized Bdcklund transformation for (11) [and/or (10)].
In other words, supposing that f is a solution of (11),
if g with f satisfies (13), (14) and (15), then we can
conclude that g is a solution of (11) as well.

Having in mind the arbitrariness of functions B(t),
k(t) and x(t), and choosing k(¢) = a(¢)B(t) and x (¢) =
—B(t)A(t) with 3B%(t) = b(t), we can rewrite (13) as

(14)

—B(1)[6D; — 6B(1)Dy —a(t)x)(g- f) = x(1)gf
= —B(t)A(t)gf,

which, obviously, is equivalent to (14). Therefore, we
can take the set of (14) and (15), in a more compact
and clear way, as a bilinear Biacklund transformation
for (11) [and/or (10)].
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In order to illustrate that (14) and (15) do con-
struct a Béacklund transformation, we need to inves-
tigate their compatibility condition. This compatibil-
ity, to some extent, is related to the inverse scattering
scheme, which will be conducted in the next section.
As aresult, we will get certain constraints on the vari-
able coefficients and the external-force term.

3. Derivation and Investigation of the Inverse
Scattering Scheme for (10)

In [25], with the help of a commutativity condition,
the authors have constructed Kadomtsev-Petviashvili
equations which depend explicitly on x and . However,
different from [25], starting with the Backlund trans-
formation [(14) and (15)], we will derive and investi-
gate the inverse scattering scheme [2,23,24] for (10)
with the aid of symbolic computation. Computer alge-
bra for this type of calculation can be referred to [22].

Setting ¢ = yf with u(x,y,r) = (D3f - f)/f* =
2(Logf)xx in (14) and (15) leads to

6y + 61y — 6B(1) Y, — a(t)xy — (1) y =0, (16)

2+ 2+ 6u Wy + 6B(1) Yy + 6B(1) ¥ / wds (1o
+a(t)xye+A )y — u(y,H)y =0,

which constitute the inverse scattering scheme for (10).
By introducing two linear differential operators, L,
L,, defined by

A1)

~ 4 1o u a(t)x
=0 =539~ 5oy T B0y T eB)

Ly = 0; + Oxx + 3udy + 3B(1)0%, + 3B(1)9; 'uy

RGP}
(16) and (17) may be expressed as Li v =0 with Zzly =
0. In other literature [2, 2/3\, 24], the pair of the linear
differential operators (L1, L,) is called Lax pair, which
satisfies a compatibility condition if their order may
be interchanged as LiLyy = Llel// or, equivalently,
[Ll,Lz] LiL,—L,L; =0.

Here, the commutator of the operators 21 and Zz
gives the generalized variable-coefficient two-
dimensional KdV model with external-force term,
(10), provided that the following two constraints

on a(t), B(t) [or b(¢)], A(¢t), u(y,7) and Fyc(x,y,t) are
satisfied:

~2a(t) B(t) . B(1)
W B0 w0 0 B - 2

i.e., b(t) =3ae 4 a0

- A Generalized Variable-Coefficient Two-Dimensional KdV Model
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where « is an arbitrary integration constant;

a2 X a X a
I B a
2 6(:) ~ uy(y,;)B(ﬂ — Fu(rn1).

Constraint (1) determines the relationship between the
variable-coefficient functions a(r) and b(¢), while (2)
constrains the functional forms of the variable-
coefficient functions and the external-force term. Un-
der these two constraints, we may claim that (10) is
integrable in the sense of having an inverse scattering
scheme [(16) and (17)] or a Lax pair.

As shown previously, the inverse scattering scheme
and the bilinear method have a strong relation from the
viewpoint of the Biacklund transformation. It deserves
to be specially noted that the bilinear Bdicklund trans-
formation not only gives rise to the original equation
as its compatibility condition, but also generates cer-
tain constraints on the variable-coefficient functions
and the external term, in virtue of the inverse scattering
scheme.

4. Applications and Examples

We have extended the bilinear method to (10) and
derived its bilinear Béacklund transformation and in-
verse scattering scheme with certain corresponding
constraints. Attention should be paid to these con-
straints for further study on (10). Combining with con-
straint (1), let us concentrate on constraint (2) to make
some discussion and give several examples of physical
interest in this section. Noting that 3B%(¢) = b(t), for
convenience, we conduct our work with respect to B(¢)
[instead of b(z)].

(i) Fu(x,y,1) =0.
In this case, combining constraint (1) with (2),
we calculate: a(t) = ﬁ b(t) = ﬁ, wiy,t) =

yui(r) + pa(r), and A(r) = 57 { [ (0)B() (20 +
B)+ v]|dt}, where 8 and 7y are two arbitrary integra-
tion constants, while u;(¢) and i, (¢) are two arbitrary
functions of the variable ¢.

Thus, (10) reduces to (9), provided that o« = 402
with f = 0, and turns to (5) by setting o = 0 with f =
0. This means that some completely integrable models,
such as the cylindrical Kadomtsev-Petviashvili equa-
tion and the cylindrical KdV equation, can be included
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in our model under the aforementioned two con-
straints. Furthermore, (14) with (15) and (16) with (17)
[after corresponding reduction] can be, respectively,
regarded as the Bécklund transformation and inverse
scattering scheme for these equations.

(ii) Fe(x,y,1) #0.

a*(t)x 3
3 6

da(f)x 1

Case 1. — #0 = a(t);ézH_B.

In virtue of constraint (2), we can deduce that the
external-force term, Fy(x,y,t), should obey the for-
mula

Fxx(xvyat) ZXFl(t) +F2(y’t) +F3(t)»

where Fi(t) = —@ - “T(t), Fy(y,1) = —M and
F(t) = —w — AT([). Hereby, (10) reduces to
(7 + Outty + ] x + a(t)ux + b(1)uyy + xFi (1)

18
Fa(3) + Fi(1) =0. 1o

(Note that the external-force term here depends on the
variables x, y and ¢.)
A special instance for this case has the form

(17 + Ottty + U] + a(t)ux + b(1)uyy (19)
+xFi(t) + F3(t) + Fat) = 0

with F4(t) = — L1 (t)B(t), which means that Fy(x,y,)

is independent of the variable y. (Note that the external-

force term here depends on the variables x and ¢.)

d (t)x 1

a*(t)x _ _
— =0 = a(t)_2t+ﬁ'

3 6

Case 2. —

In this case, starting with constraint (2), we can infer
that the external-force term, Fy(x,y,?), should possess
the form [F>(y,t) and F3(t) defined here are similar to
these in case 1]

Fxx(xvyat) :FZ(yat)+F3(t)

with a subsidiary condition: F5(y,7)F3(t) # 0, which
demands that:

(1) A(t) = 8e~2/ a4 with y,(y,1) # 0 or

(2) A(t) # 8e~2/ a4 with py (1) =0 or

(3) A(t) # e 2/ 4O% with p,(y,1) #0,

where 8 is an arbitrary integration constant.
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Hence, (10) can be expressed as

[y + Ou sty + Ure]x + alt) i + D(2)uyy

20
+F2(y,t)+F3(t)=O. 20)

(Note that the external-force term here depends on the
variables y and ¢.)

Two special examples for this case are listed as fol-
lows (note that the external-force term in each example
only depends on the variable 7):

o A1) = e 2/ D% with p(y,1) = yus(t) + pa(t),
where p3(7) # 0 and p4(r) are two arbitrary functions
of #; then Fy(x,y,7) is of the form as Fy(x,y,7) =
—%/.1.3 (t)B(t) = F5(t) and (10) reduces to

[ + 06Uty + U] +a(t ) ux + b(t)uyy+ F5(t) =0. (21)

o A(r) # Se 21O with p(y,1) = yus(e) + (1),
where Us(t) and pe(r) are two arbitrary functions
of #; then Fy(x,y,7) is of the form as Fy.(x,y,7) =

aA) A
3 6

[y + Ottt + ] +a(t )ux +b(t )uyy+ Fs(t) = 0. (22)

It has to be noticed that all the previous investiga-
tions have been handled on the basis of constraints (1)
and (2). As a result, various cases of the external-force
term are deduced in detail. As shown in Section 3, the
two constraints are closely related to the inverse scat-
tering scheme or Lax pair, that is, (10) is thought to be
integrable under these constraints. Hence, we end up
with a conclusion that all the cases obtained above are
integrable (in the sense of having an inverse scattering
scheme or a Lax pair).

5. Conclusions and Discussion

In conclusion, we have investigated a generalized
variable-coefficient two-dimensional KdV model with
external-force term, i. e., (10). With the aid of symbolic
computation, we have extended the bilinear method to
this model and obtained the bilinear form and Béack-
lund transformation, through which the inverse scatter-
ing scheme (Lax pair) with corresponding constraints
has been derived. Attention should be emphasized on
the following:

e The generalized variable-coefficient two-
dimensional KdV model with external-force term,
(10), has abundant applications in various branches



X. Lii et al. - A Generalized Variable-Coefficient Two-Dimensional KdV Model

of physical and engineering sciences as mentioned
before. Many important models appearing in shallow
water waves, plasma physics, and fluid dynamics,
for example the cylindrical KdV equation and the
cylindrical Kadomtsev-Petviashvili equation, can
be included by (10). Therefore, the investigations
upon (10) are of great interest and significance.

e The bilinear method employed in the present
paper is a straightforward and effective one, which
was originally proposed by R. Hirota and applied to
constant-coefficient NLEEs, while here we have de-
veloped it to a variable-coefficient two-dimensional
model. It means that the bilinear method is also pow-
erful in dealing with some variable-coefficient and
higher-dimensional problems, and studies on this point
should be furthered.

e The integrability of (10) turns to be a signifi-
cant matter. For many completely integrable NLEEs,
the extension of their coefficients from constants to
functions often makes them non-integrable. Hence,
certain constraints on the variable-coefficient func-
tions are needed to be constructed in hope that the
variable-coefficient NLEEs become still integrable. In
the present paper, based on the Bicklund transfor-
mation and the inverse scattering scheme, two con-
straints on the variable-coefficient functions of (10)
have been given and, via symbolic computation analy-
sis of the constraints, various cases thought to be in-
tegrable have been listed. These cases with suitable
choices of the variable-coefficient functions for each
specific problem could be used in many more com-
plicated, realistic physical situations and experimental
environments, considering the inhomogeneities of me-
dia, nonuniformities of boundaries and external forces.
For example, many Kadomtsev-Petviashvili equations
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