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Analytical approximations of the Lyapunov exponent are derived for a random displacement model
with equal potential barriers and random positions of the scatterers. Two asymptotic regions are con-
sidered corresponding to high and low reflectivity of the single scattering potential. The analytical re-
sults are in terms of a distribution function W for certain phases of the transfer matrices. A functional
equation for W is derived and numerically solved. This serves to validate the analytical asymptotic
formulas which turn out to be accurate in the high and low reflectivity regions with dimensionless
wave number K < 2 and K > 6, respectively. The high wave number asymptotics allows for an ana-
lytical examination of the sufficient conditions for Anderson localization.
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1. Introduction

The present interest in one-dimensional disordered
electron systems is mainly focused on the effect of cor-
related disorder, see e. g. [1 – 4], on Anderson localiza-
tion in Bose-Einstein condensates [5], or on the effect
of dynamic disorder as by phonons [6]. In this paper,
we give an exemplary direct insight into the properties
of a random system by deriving analytical expressions
of the Lyapunov exponent. This is achieved for asymp-
totic regions of high and low reflectivity of a single
scatterer. The present contribution is thus complemen-
tary: (i) to the deep existence theorems of mathemati-
cal spectral theory, for an overview see e. g. [7, 8], in-
cluding Anderson’s seminal paper [9] which contains
a highly nontrivial convergence proof of a perturbation
series; (ii) to scaling theory, see e. g. [10 – 12]; (iii) to
numerical studies, see e. g. [13 – 18]. Our model allows
for arbitrary disorder, in contrast to other analytical
studies: (i) on the Lloyd model [19, 20], where disor-
der is confined to a Cauchy distribution; (ii) like [21],
which is limited to weak disorder; (iii) on the random
dimer model [4], which deals with a binary alloy with a
discrete distribution. As will be seen, the requirement
of positive Lyapunov exponents will restrict, to some
extent, the set of permitted disorder distributions.

We adopt a random displacement model (RDM)
which is characterized as follows: There are N equal
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repellent scatterers with nonoverlapping potentials at
random positions dn(εn) = (n + εn)d, where the ran-
dom numbers εn, n = 1,2, . . .N, are statistically inde-
pendent and equally distributed by a distribution func-
tion p(ε). The Hamiltonian of the RDM has “almost
surely a dense pure point spectrum with exponentially
decaying eigenfunctions” [22].

The free electron regions between two neighbouring
scattering potentials are characterized by the ampli-
tudes {an,bn}. Since eventually we are interested in lo-
calized states, which have zero particle current density,
the amplitude ratio, an/bn = exp[iϕn], lies on the unit
circle. The disorder distribution p(ε) induces a distri-
bution function W (ϕ) of the phases ϕn, and W will
fully characterize localization or delocalization. We
have to assume that W exists in the limit of infinitely
many scatterers, and that this function is the same for
almost all displacement configurations ε1,ε2, . . . .

According to the Oseledec-Ruelle theorem, see
e. g. [7], the asymptotic behaviour, |x| → ∞, of the
solution of the stationary Schrödinger equation with
stochastic potential qω(x),

− h̄2

2m
ψ ′′(x)+ qω(x)ψ(x) = Eψ(x), x ∈R,

either grows or decays exponentially for almost all dis-
order configurations provided certain conditions of the
potential q and of the distribution function of the disor-



206 A. Rauh · Analytical Localization Lengths

der parameter space ω are fulfilled. We will specify the
conditions for the RDM in Section 6. The asymptotic
behaviour, in principle, depends on the initial condi-
tion at x = x0 and on the energy E of the 2× 2 trans-
fer matrix M(x,x0;E) which enters when the station-
ary Schrödinger equation is considered as a dynamical
system:(

ψ(x)
ψ ′(x)

)
= M(x,x0;E)

(
ψ(x0)
ψ ′(x0)

)
.

Because the Wronskian is constant, M has determi-
nant 1. As a consequence, the two eigenvalues µ1,2
of M have the property µ1µ2 = 1, and if µ1 exponen-
tially increases with |x| → ∞, then µ2, being the in-
verse of µ1, decreases exponentially. Moreover, if vvv0 =
(ψ(x0),ψ ′(x0)) is any initial vector, then Mvvv0 →
const.µ1e1 almost always; exception is when vvv0 is par-
allel to the eigenvector e2 of the exponentially decreas-
ing eigenvalue µ2. Only these exceptional cases lead
to physically acceptable states. Boundary conditions
at x0, which are necessary for self-adjoinedness (e. g.
in the limit x0 → −∞), lead to discretization of the
energy En, n = 1,2, . . . . Thus, if the point spectrum
lies in the interval E ≥ 0 and the stochastic poten-
tial for |x| → ∞ typically leads to expontially increas-
ing eigenvalues µ1 in the energy interval E ≥ 0, then
the bound states at E = En are exponentially localized
according to µ2 ≡ 1/µ1. Obviously, the localization
length at E = En can be inferred, almost always, from
the asymptotic behaviour of ‖M(x,x0 : En)vvv0‖ starting
with any initial state vvv0 without regard to boundary
conditions.

We remark that an analogous situation can be ob-
served also for determistic one-dimensional Hamilto-
nians. For instance, in the case of the harmonic oscil-
lator, the amplitude ‖vvv‖ = ‖M(x,x0;E)vvv0‖ exponen-
tially increases for almost all initial vectors vvv0; this
implies that the bound states are localized with the
negative exponent. As is well known, the (asymptot-
ically leading) exponent is proportional to x2, whereas
random systems give rise to an asymptotic exponent
linear in |x|, in general. As another deterministic ex-
ample, the radial part of the wave function of the
hydrogen atom behaves asymptotically proportional
to exp[+|const.|r], r =

√
x2 + y2 + z2] > 0 for most

initial conditions, whereas the bound states are propor-
tional to exp[−|const.|r] to leading order.

The Lyapunov exponent characterizes the asymp-
totic behaviour of the wave function ψ(x) in the limit

of large |x|. For the RDM, this exponent will be de-
fined in terms of the free electron amplitudes An =√|an|2 + |bn|2 in the limit n→ ∞.

In the high energy limit, our asymptotic analyti-
cal formulas are numerically corroborated for wave
numbers wK > 6, where K corresponds to the en-
ergy E(K) = h̄2/(2m)K2, and w is the width (support)
of a single scatterer potential [the energy scale is fixed
by the potential strength V = h̄2/(2m)K2

V ; we chose
mostly wKV = 3.2]. Similarly, the low energy asymp-
totics is approximately validated for wK < 2. How-
ever, this region is less intriguing for Anderson local-
ization, because simply no bound state may fall into
this domain. The checks are performed by means of
a functional equation for the distribution W (ϕ) which
we solve numerically to high accuracy; it is derived in
Appendix C.

The paper is organized as follows. In the next sec-
tion we briefly outline the transfer matrix formal-
ism and define the Lyapunov exponent for the model.
In Section 3 we derive a recurrence relation for the
phases ϕn and connect it with the Lyapunov expo-
nent. Section 4 introduces the distribution W (ϕ) for
the problem, and connects this function to a cumula-
tive distribution, which obeys a linear integral equa-
tion. Some computer runs with direct simulation of
the transfer phases are displayed and compared with
the numerical solution of the integral equation. In Sec-
tion 5 the integral equation is solved perturbatively up
to third order of the reflection coefficient ρ . The Lya-
punov exponent, derived from the perturbative solu-
tion, is of second order in ρ with first- and third-order
terms vanishing exactly. The result gives the correct
zero value of the Lyapunov exponent in the limit of
a regular lattice. In Section 6, we discuss the depen-
dence of the asymptotic Lyapunov exponent on the dis-
order distribution p(ε). The low energy asymptotics
is derived in Section 7 from the recurrence system.
There follow four appendices. In Appendix A, we out-
line the computer code to solve numerically the func-
tional equation for W (ϕ). In Appendix B formulas are
proved, which are used in the main text and also in
Appendix C and D, where, respectively, the functional
equation for W (ϕ) is derived, and Wreg(ϕ) of a regular
lattice is explicitly given.

2. Transfer Matrix and Lyapunov Exponent

The random displacement model [22] is character-
ized by equal, spin-independent, potential barriers with
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distances

dn = (n + εn)d, n = 1,2, . . .N, (1)

from the origin. The εn are independent random num-
bers with the identical distribution function pn(εn) ≡
p(ε). The latter has finite support with p(ε) = 0
for |ε|> ε∗, and to avoid overlapping, one requires that
ε∗ < 1/2(1−w/d), where w is the width (support) of a
single barrier and d the mean spacing; clearly w < d. In
illustrations, we will mostly assume the constant distri-
bution

p(ε) = Θ(ε∗ − |ε|)/(2ε∗), (2)

where Θ(x) = 1 for x > 0, and Θ(x) = 0 else, is the
Heaviside function. The regular case is obtained by set-
ting all εn = 0, which is equivalent to p(ε) = δ (ε).

In the potential-free regions the electron state ψ(x)
is described (we omit spin indices) by the amplitude
vectors An = {an, bn}. Defining ε0 := 0, d0 := −w/2,
dN+1 := L+ w/2, and i :=

√−1, we write in the inter-
val 0≤ x≤ L

ψ(x) = an exp[iKx]+ bn exp[−iKx],
dn + w/2 < x < dn+1−w/2, n = 0,1 . . .N.

(3)

The corresponding energy is E(K) = h̄2K2/(2m). Con-
secutive amplitude vectors are connected through 2×
2 transfer matrices Tn:

An = TnAn−1, AN = T (N)A0,T (N) = TNTN−1 . . .T1.

(4)

Constancy of the particle current density

j(x) =
h̄

2mi

[
ψ∗(x)

dψ(x)
dx
−ψ(x)

dψ∗(x)
dx

]

=
h̄K
m

(|an|2−|bn|2), n = 0,1, . . . ,

(5)

(or equivalently of the Wronskian) implies that for all
n = 1,2 . . .N

det(Tn) = det(T (N)) = 1. (6)

The definition of the Lyapunov exponent Λ, used here
from [23], takes into account the dependence on the
initial amplitude vector A0:

Λ(A0) = limN→∞
1
N

ln(AN),

AN ≡ ‖AN‖=
√
|aN |2 + |bN |2.

(7)

In the adopted model, the Tn are independent, identi-
cally distributed random matrices, which are the basic
prerequisites of existence theorems on Λ, see e. g. [23 –
25].

We write the transfer matrix of a scatterer located in
the coordinate origin as

T0 =
(

1/t∗

−r/t
−r∗/t∗

1/t

)
, (8)

where t and r are the transmission and reflection co-
efficients, respectively, and the star denotes complex
conjugation. The polar form reads

t = τ exp[iθ ], r = ρ exp[i(θ + σ)],

τ2 + ρ2 = 1.
(9)

In the case of scatterers with inversion symmetry, the
phase σ ≡ σ(K) = ±π/2; sign changes occur at wave
numbers K, where ρ(K) = 0. The matrix Tn, which
corresponds to the scatterer at position dn, is obtained
from T0 by translation:

Tn = (Un)−1T0Un,

Un =
(

exp[iK dn]
0

0
exp[−iK dn]

)
.

(10)

It is convenient to introduce the unitarily equivalent
amplitude vectors

A′n = UnAn, (11)

which transform Tn→Mn with

Mn = T0Un(Un−1)−1, n = 1,2, . . .N, U0 = 1. (12)

For the rest of this paper, the prime of A′n will be
omitted. In the regular case with dn = nd, the matri-
ces Mn ≡M1 are the same for all n.

For illustration, let us determine the Lyapunov ex-
ponent for the regular case. As compared with T0, the
matrix M1 contains the additional phase shift α = K d
picked up by the state when the electron proceeds to
the neighbouring scatterer:

M1 =

(
1
τ exp[i(θ + α)] − ρ

τ exp[−i(σ + α)]

− ρ
τ exp[i(σ + α)] 1

τ exp[−i(θ + α)]

)
,

α = K d. (13)

The eigenvalues µ1,2 ≡ µ1,2(K) of M1 are deter-
mined from the trace S ≡ S(K) and the condition
that det(M1) = 1:

S≡ µ1 + µ2 = 2
cos(θ + α)

τ
, µ1 µ2 = 1. (14)
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If S2 < 4, then the eigenvalues µ1,2 = exp[±iλ ] lie on
the unit circle; this corresponds to band energies in the
case of an infinite or periodic lattice. If S2 > 4, then the
eigenvalues µ1,2 = exp[±λ ] are real with one of them,
say µ1, larger than 1. We write the initial amplitude
vector in terms of the eigenvectors e1,2 of M1:

A0 = c1e1 + c2e2, (15)

and obtain

An = ‖(M1)nA0‖= ‖c1µn
1 e1 + c2µn

2 e2‖. (16)

Clearly, if the eigenvalues µ1,2 lie on the unit circle,
then An is bounded for any integer n. According to
the definition (7), the Lyapunov exponent Λ = 0 for
arbitrary initial amplitudes A0. On the other hand, if
S2 > 4, which corresponds to energies in a band gap,
we have

lim
n→∞

An = const. exp[nλ ], λ > 0, (17)

which gives rise to Λ(A0) = λ for almost all initial
amplitudes; exception is A0 = c2e2, where Λ = −λ .
The special case S2 = 4 corresponds to band edges and
is singular with degenerate eigenvalues µ1 = µ2 =±1.

3. Recurrence Relations

Similarly to [26], where a random Kronig-Penney
model was studied, we start with the amplitude ratio

an/bn = exp[iϕn], −π ≤ ϕn < π . (18)

The property |an/bn| = 1 implies that we restrict our-
selves to states with current density j(x) = 0. This is
cogent when one is looking for localized states. The
phases ϕn and ϕn−1 are connected through the ma-
trix Mn which is written in the form

Mn =

(
1
τ exp[i(θ + αζn)] − ρ

τ exp[−i(σ + αζn)]

− ρ
τ exp[i(σ + αζn)] 1

τ exp[−i(θ + αζn)]

)
,

ζn = 1 + εn− εn−1. (19)

From An = MnAn−1 one finds

an =
an−1

τ
{exp[i(θ + αζn)]−

ρ exp[−i(ϕn−1 + σ + αζn)]},
bn =

bn−1

τ
{exp[−i(θ + αζn)]−

ρ exp[i(ϕn−1 + σ + αζn)]},

(20)

exp[iϕn]≡ an

bn
= exp[i(2θ + 2αζn + ϕn−1)]

· 1−ρ exp[−iΦn]
1−ρ exp[+iΦn]

,
(21)

where

Φn = 2αζn + θ + σ + ϕn−1. (22)

This suggests a recurrence system for Φn instead
for ϕn. Introducing the number Ω = 2(θ +α), one im-
mediately obtains from (21) and (22)

Φn+1 = F(Φn,ρ)+ Ω + 2α(εn+1− εn),
F(Φ,ρ) = Φ+ 2γ(Φ,ρ),
n = 1,2, . . . , Φn ∈ [−π ,π),

(23)

where

γ(Φ,ρ) = arg(1−ρ exp[−iΦ]) or

tan(γ) =
ρ sin(Φ)

1−ρ cos(Φ)
.

(24)

The inverse function of F with Ψ = F(Φ,ρ) and Φ =
F−1(Ψ ,ρ) is simply given as, see Appendix B,

F−1(Ψ ,ρ) = F(Ψ ,−ρ)≡Ψ +2γ(Ψ ,−ρ). (25)

For ρ2 < 1, which we always assume, the derivative is
positive, i. e.

∂F(Φ,ρ)
∂Φ

≡ F ′(Φ) =
1−ρ2

1−2ρ cos(Φ)+ ρ2 > 0, (26)

so that Φ→ F(Φ) is bijective in the half open inter-
val Φ ∈ [−π , π). The phase γ can be restricted to the
open interval (−π/2,π/2). From (22) the initial phase
is given by

Φ1 = Ω−θ +σ +2αε1 +ϕ0, exp[iϕ0] =
a0

b0
. (27)

By iterating (23), one obtains

Φn = 2αεn + nΩ + Φ0 +Ψn−1,

Ψn−1 = 2
n−1

∑
µ=1

γ(Φµ ,ρ).
(28)

At the special energies, where ρ = 0 and thusΨn−1≡ 0,
there is the explicit solution

Φ(0)
n = nΩ + 2αεn + Φ0, Φ0 = σ −θ + ϕ0, (29)
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Fig. 1. Computer experimental distri-
bution function WN(Φ) of the phases
{Φ1,Φ2, . . .ΦN}, N = 106, for a single con-
figuration. The parameter values read: wave
number K = 1; disorder parameter ε∗= 0.1;
bin width ∆Φ = 0.01; potential strength pa-
rameter KV = 3.2; quotient of mean lattice
constant by width of scattering potential
d/w = 1.5. The discrete points are joined
by straight lines.

where Ω = limn−>∞ Φ(0)
n /n can be identified as a rota-

tion number [27].
As to the amplitudes An, we find from (20) the re-

currence relation

An ≡
√
|an|2 + |bn|2 = xnAn−1,

xn =
√

1 + ρ2−2ρ cos(Φn)/τ.

(30)

By iteration we obtain An = ∏n
ν=1 xν A0. Using the re-

lation τ =
√

1−ρ2, we arrive at the following expres-
sion of the Lyapunov exponent:

Λ≡ limN→∞
ln(AN)

N
=

1
2

{
limN→∞

1
N

N

∑
n=1

ln[1 + ρ2

−2ρ cos(Φn)]− ln[1−ρ2]
}

. (31)

Thus, for a given reflection coefficient ρ , the ampli-
tudes An and the Lyapunov exponent are fully deter-
mined by the phases Φn, n = 1,2, . . . .

As a function of the wave number K, the reflection
coefficient ρ can have zeros. For a square barrier po-
tential, there are infinitely many zeros at Kn which are
specified in Section 5, equation (56); for illustration
see Figure 5. If ρ = 0, then the transfer matrices Mn,
defined in (19), are unitary. This implies constant am-
plitudes An = A0 for all n, and thus a zero Lyapunov
exponent for every disorder configuration of the RDM.
Of course, such a behaviour will not be met in the case
of random potential strengths when ρ→ ρn is different
for different sites n.

4. Distribution Function of the Phases ΦnΦnΦn

We define the distribution function in terms of the
periodic Dirac delta function as follows:

WN(Φ) =
1
N

N

∑
n=1

δper(Φ−Φn),

δper(x) = ∑
r∈Z

δ (x−2πr), Φ ∈ [−π ,π).
(32)

In Fig. 1 we display the computer experimental dis-
tribution function WN(Φ) for K = 1; the function was
integrated over the bin width ∆Φ = 0.01. In Fig. 1
and henceforth, the wave number and potential param-
eter K and KV , respectively, are dimensionless after
multiplication with the potential width w. As will be
shown in Section 7, the triangular form of the curve
can be understood from the analytical asymptotic limit
ρ → 1; with the potential parameter KV = 3.2 we have
ρ(K = 1) = 0.9984. In Fig. 2 the analogous distri-
bution is shown for K = 4.7, which corresponds to a
much smaller reflectivity with ρ = 0.0933. As is seen,
WN(Φ) �= 0 in the whole interval Φ ∈ [−π ,π); the
curve corresponds to the analytical approximation (up
to order ρ3) of the functional equation for WN(Φ) with
N→ ∞; see further below.

We assume, that W (Φ) = limN→∞WN(Φ) =
limN→∞WN(Φ) for almost all disorder configurations
{ε1,ε2, . . .}. With W (Φ), the Lyapunov exponent (31)
can be written in the form

Λ = (Λ1 + Λ2)/2,

Λ1 =
∫ π

−π
dΦW (Φ) ln[1−2ρ cos(Φ)+ ρ2],

Λ2 =− ln(1−ρ2).

(33)
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Fig. 2. The same as Fig. 1 for K = 4.7
with the same disorder configuration. The
by computer experiment obtained point set
for N = 106 is compared with the analytical
approximation (up to order ρ3) of the func-
tional equation for W (Φ) (solid line), which
corresponds to an infinite number of scatter-
ers, N→ ∞. As compared to Fig. 1 the plot
range of the vertical axis is restricted.

The density W (Φ) is determined by means of a condi-
tional probability function V (x) for x ∈ [−π ,π ], which
obeys the following linear integral equation (see Ap-
pendix C, also for interpretation):

V (x) =
∫

R
dη p(η)[V (Y )−V(Y0)],

(x,η)→ X = x + 2αη−Ω,

X → Y = F−1(X ,ρ), Y0 = Y (x =−π),

(34)

where x → V = V (x) is uniquely determined by the
properties

V (−π)= 0 and V (x+2π)=V (x)+1, x∈R, (35)

which implies that V (π) = 1, and V (x)−x/(2π) is 2π-
periodic. The density W is connected to V as follows
(see Appendix C):

W (Φ) =
1

2α

∫
R

dε p′(ε)V (Φ−2αε). (36)

As it is easily seen, after partial integration with respect
to ε , ∫ π

−π
dΦW (Φ) = 1. (37)

In the case of the special disorder distribution (2), we
have

p′(ε) = [δ (ε∗+ ε)− δ (ε∗ − ε)]/(2ε∗), (38)

which gives rise to

W (Φ) = [V (Φ+2αε∗)−V (Φ−2αε∗)]/(4αε∗). (39)

By means of discretization and for the disorder dis-
tribution (2), we have solved the integral equation (34)
numerically to high accuracy; e. g. numerical normal-
ization error of W (Φ), with the aid of the trapezoidal
rule, was of the order 10−15. The computer code is out-
lined in Appendix A. Basically, this code serves to ex-
amine empirically in which wave number intervals our
analytical approaches are acceptable approximations.
For our standard model (see caption of Fig. 1, but vari-
able K), the asymptotic formulas for ρ → 1 are quan-
tatively reliable in the interval 0≤ K < 2. In the oppo-
site limit, ρ → 0, the asymptotic formula given in (55)
and numerical evaluation of the integral equation are
in good agreement for K > 6, see Figs. 3 and 4.

In principle, results can also be obtained by direct
numerical simulation of the recurrence system (23)
which was applied to obtain Fig. 1 and the point set of
Figure 2. However, for a given number N of scatterers,
the fluctuations increase with wave number (or equiv-
alently with decreasing reflection coefficient ρ). One
can see this, e. g., by comparing Fig. 2 (ρ = 0.0933)
with Fig. 1 (ρ = 0.9984). Going to smaller ρ , the num-
ber N, which is required to obtain results above the
noise level, soon becomes prohibitively large. The inte-
gral equation (34), on the other hand, implies the limit
N→ ∞.

5. Perturbation Theory for Small Reflection
Coefficient

In order to solve the integral equation perturbatively
up to third order in ρ , we make the ansatz

V (x) = V0(x)+ρ V1(x)+ρ2V2(x)+ρ3V3(x), (40)
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Fig. 3. Natural logarithm of Lyapunov ex-
ponent Λ as a function of the wave num-
ber K calculated at K → K( j) = 1 + 1/2 j,
j = 0,1, . . . ,48. The discrete points Λ(K( j))
are joined by straight dashed and solid
lines for the numerical solution of inte-
gral equation (34) and the analytical expres-
sion Λ(2) as given in (55), respectively. The
two curves practically coincide for K > 6.
There is an almost coincidence of the dis-
crete point K(30) = 16 and the fifth zero
of ρ(Kn) = 0 at K5 = 16.0306 [see (56)],
where the Lyapunov exponent is exactly
zero.
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Fig. 4. Natural logarithm of relative er-
ror ∆ = | log(Λ)− log(Λ(2))|/| log(Λ)| as a
function of the wave number K calculated at
K → K( j) = 1 + 1/2 j, j = 0,1, . . . ,48 cor-
responding to Figure 3. The discrete points
log(∆(K( j))) are joined by straight lines.

and use the series representation (see Appendix B)

F(Φ,ρ) = Φ+ 2 ∑
r=1,2,...

ρ r sin(rΦ)
r

,

F−1(Φ,ρ) = F(Φ,−ρ).
(41)

For simplicity, we assume symmetric disorder distribu-
tions, p(ε) = p(−ε). With the notation of the Fourier
transform

pn =
∫

R
dε p(ε)exp(−2inαε)

=
∫

R
dε p(ε)cos(2nαε)

(42)

and the abbreviations

Dn = 1−2pn cos(nΩ)+(pn)2, n = 1,2, . . . , (43)

the formal series expansion of (34) leads to the follow-
ing recurrence structure:

Vn(x)−
∫

R
dη p(η)Vn(X) =∫

R
dη p(η)[Gn−1(Y )−Gn−1(Y0)−Vn(Y0)],

(44)

where the function Gn−1 is known in terms of the
lower-order functions V0, . . .Vn−1. The dependence
on ρ enters explicitely through the ansatz (40),
and implicitely through the argument Y : V (Y ) ≡
V (F−1(X ,ρ)). To zero order in ρ , we can replace
in (34) Y = F−1(X ,ρ) by Y = X ≡ x + 2αη −Ω,
and obtain the unique solution V0(x) = (x + π)/(2π),
which obeys the conditions (35). As a consequence, the
functions V1(x), V2(x), . . . are periodic with Vn(−π) =
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0. We insert the following ansatz into (44):

Vn(x) = ∑
ν∈Z

c(n)
ν exp[iνx], n = 1,2, . . . , (45)

and compare the coefficients of the independent func-
tions exp[imx], m ∈ Z, which lead to the equations

c(n)
m [1− pm exp(−imΩ)]=

∫
R

dη p(η)[Gn−1(Y )]m (46)

and ∫
R

dη p(η)[Gn−1(Y0)+Vn(Y0)] = 0, (47)

where [..]m denotes the coefficient of exp[imx]. By
the definition (42), p0 = 1. We assume that |pm| <
1 if m �= 0, to be discussed later. Then, the coef-
ficients c(n)

m are determined through (46) except for
c(n)

0 , which is needed to fulfill (47); the m = 0 com-
ponent [Gn−1(Y )]m→0 can be set equal to zero. The
algebraic manipulations required were carried out by
means of Mathematica [28]. Below, we write the solu-
tion with V3(x) in a less explicit form to avoid clumsy
expressions:

V0(x) = (x + π)/(2π), (48)

V1(x) =
p1

πD1
[sin(Ω)+sin(Ω−x)+ p1 sin(x)], (49)

V2(x) =
p2

2πD1D2
{p1(1 + p2)[sin(Ω−2x)− sin(Ω)]

+ p1p2[sin(Ω + 2x)− sin(Ω)]

+ ((p1)2−1)[sin(2Ω−2x)− sin(2Ω)]

− p1[sin(3Ω−2x)− sin(3Ω)]

+ p2((p1)2−1)sin(2x)}, (50)

V3(x) = c(3)
0 +{c(3)

1 exp(ix)+ c(3)
3 exp(3ix)+ c.c.},

c(3)
1 =

ip1

2π(D1)2D2
[p1− exp(−iΩ)]2

· [p1 + p2 exp(−iΩ)][p2 exp(2iΩ)−1],

c(3)
3 =

ip3

6πD1D2D3
[exp(−iΩ)− p1][p2− exp(−2iΩ)]

· {exp(3iΩ)+ 2p1 exp(2iΩ)+ 2p2 exp(iΩ)

+ p1p2}[p3− exp(−3iΩ)],

c(3)
0 =−

∫
dη p(η)G2(Y0)+{p1 c(3)

1 exp(−iΩ)

+ p3 c(3)
3 exp(−3iΩ)+ c.c.},

G2(Y0) =− 2
6π

sin(3Y0)+ sin(2Y0)V ′1(Y0)

−2sin(Y0)V ′2(Y0)+ 2sin2(Y0)V ′′1 (Y0),

Y0 =−π−Ω + 2αη . (51)

For the ansatz (40), the conditions (36) are fulfilled.
Let us apply the approximation to the Λ1 term of the

Lyapunov exponent, given in (33). To this end we make
use of the Fourier representation (see Appendix B)

ln[1−2ρ cos(Φ)+ρ2] =−2 ∑
s=1,2,...

ρ s cos(sΦ)
s

. (52)

With reference to (36), we first integrate with respect
to Φ:

Λ1 =
1

2α

∫
R

dε p′(ε)
∫ π

−π
dΦ ln[1−2ρ cos(Φ)+ ρ2]

·V (Φ−2αε). (53)

The Φ integral is carried out up to order ρ4, but we
omit to write down here the rather awkward fourth-
order term. With the aid of partial integration we ob-
tain

Λ1 =
p1

αD1

∫
R

dε p′(ε)[p1 sin(2αε)− sin(Ω + 2αε)]ρ2

+O(ρ4)

=
2(p1)2

D1
[cos(Ω)− p1]ρ2 +O(ρ4).

(54)

First- and third-order terms are exactly zero. We now
add from (33) the term Λ2 = ρ2 +O(ρ4) and take into
account the factor 1/2 to arrive at

Λ = Λ(2) +O(ρ4),

Λ(2) =
ρ2

2
1− p1

1 +(p1)2−2p1 cos(Ω)

· {1 + p1 + 2(p1)2−2p1 cos(Ω)}.

(55)

As it is immediately seen, the regular case, with p(ε) =
δ (ε), implying p1 = 1, is correctly reached to second
order with Λ(2) = 0. The same is true to fourth order,
which is not shown here. We remark that the limit to
the regular case is somewhat delicate. Depending on ρ
one has to exclude a measure zero set of rotation num-
bers Ω before going to the limit. If ρ = 0, this can be
directly seen from the special case (29) which leads to
qualitatively different distributions W (Φ) for rational
and irrational Ω, respectively.
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Fig. 5. Reflection coefficient ρ as a function
of the wave number K for a square barrier
potential.

In Fig. 3, we compare the asymptotic approxima-
tion Λ(2) with the numerical solution of the integral
equation, which in principle should give the true value
of Λ. The corresponding relative error is plotted in Fig-
ure 4. As it is seen, the relative error lies below 2%
for K > 6. In Fig. 5, we display the reflection coeffi-
cient ρ as a function of K, which explains the oscil-
lating behaviour of Λ and Λ(2). As mentioned in Sec-
tion 3, the Lyapunov exponent is exactly zero at wave
numbers Kn, where the reflection coefficient ρ is zero.
In the given case of a square barrier potential, the zeros
are given by

(Kn)2 = (KV )2 + π2n2, n ∈ N. (56)

6. Is the Asymptotic Lyapunov Exponent
Positive?

According to mathematical theorems on the random
displacement model [22], the function Λ(2) should be
positive in order that the self-adjoined problem (physi-
cal boundary conditions) implies exponentially decay-
ing eigenstates, almost always. Surprisingly to the au-
thor, Λ(2) is not positive definite when considered as a
function of the independent variables p1 ∈ (−1,1) and
Ω∈ [−π ,π). Before we show this, let us discuss the as-
sumption |pn|< 1, n = 1,2, . . . , which in view of (46)
ensures a well defined formal series expansion of the
integral equation (34).

As a matter of fact, the condition |pn|< 1 is true for
a large class of symmetric disorder distributions p(ε).
To see this, we estimate pn for n = 1,2, . . . , in the spirit
of the mean value theorem of integrals, by choosing

the minimum and maximum value of cos(yε), respec-
tively. Since

∫
p(ε) = 1, we get simply

−1≤ p̂(y)≡
∫

dε p(ε)cos(yε)≤ 1. (57)

Clearly, p̂(0) = 1. However, if y �= 0 and p is reason-
ably smooth, then cos(yε) cannot stick to its maximal
or minimal value ±1 in the whole integration interval.
For the piecewise constant distribution (2) we have

p̂(y) = sin(y)/y, p1 = p̂(2αε∗) (58)

with |sin(y)| < |y| for y �= 0. In the case of asymmet-
ric p(ε), we have still the property |p̂(y)| ≤ 1, because
|∫ p(ε)exp(iyε)| ≤ ∫ p(ε) = 1. However, for y �= 0
the mean value argument does not work any more.
In any case, for large wave numbers K, the argument
α = dK is large, and if the function p(ε) is sufficiently
smooth, then p1 = p1(2αε∗) decays with some power
1/Kn, which asymptotically guarantees |pn| < 1 also
for asymmetric disorder distributions.

As a counter example, the Bernoulli distribution
p(ε) = 1/2 [δ (ε + ε∗)+ δ (ε− ε∗)] with Fourier trans-
form cos(yε∗) ≡ cos(2nαε∗) leads to |pn| = 1 at dis-
crete values of K, and could cause zero or small de-
nominators in (46). In the existence proofs for the ran-
dom displacement model [22], some continuity of p(ε)
was adopted which excludes discrete distributions.

Let us discuss the sign of Λ(2) which is determined
by the factor L = 1+ p1 +2(p1)2−2p1 cos(Ω) in (55).
If p1 is positive, then L is minimal when cos(Ω) = 1
with

L≥ 1− p1 +2(p1)2≥ 1− p1 > 0, 0≤ p1 < 1. (59)
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Fig. 6. Comparison between the map Φ→
F(Φ) (smooth curve) and its approximation
Fapp for K = 2.5 with ρ = 0.9655.

On the other hand, for negative p1 we set cos(Ω) =−1
with the consequence

L≥ Lmin = 1+3p1+2(p1)2, −1 < p1 < 0. (60)

The function L(p1,Ω =−π)≡ Lmin has zeros at p1 =
−1 and p1 = −1/2, and is negative in between with
Lmin < 0, if (−1) < p1 <−1/2. This means that there
is the possibility of negative Lyapunov exponents in
an interval of nonzero measure. We cannot assume
cos(Ω) being sufficiently above the value (−1), be-
cause the rotation number Ω = 2(θ + α), essentially,
varies linearly with K; the delay phase θ of a single
barrier potential is negative and approaches zero for
large wave numbers.

Therefore, in order to have positive Lyapunov expo-
nents asymptotically, which is in agreement with math-
ematical existence theorems, we are forced to demand
the condition p1 >−1/2.

This property is fulfilled for the distribution (2) with
Fourier transform p̂(y) >−0.21723. We have checked
other symmetric functions with increasing higher con-
tinuity of the form

p(n)(ε) = bn[(ε∗)2−ε2]nΘ(ε∗−|ε|), n = 1,2, . . . . (61)

With the normalization constants b1 = 3/4(ε∗)−3,
b2 = 15/16(ε∗)−5, b3 = 35/32(ε∗)−7, we found in-
creasing lower bounds of the corresponding Fourier
transforms: p̂(1)(y) > −0.086, p̂(2)(y) > −0.041,
p̂(3)(y) >−0.0215. So, one may guess the existence of
the following theorem: Given a symmetric distribution
function p(ε) ≥ 0 of finite support, and normalized
to 1, then its Fourier transform is larger−1/2 provided
the first or higher derivatives of p(ε) are integrable.

We see no conflict with Theorem 1.2 of [22], where
Anderson localization was proved for the given model
under the following conditions on the disorder distribu-
tion p(ε): (1) finite support in order to ensure nonover-
lapping scattering potentials; (2) continuity (more pre-
cisely “nontrivial absolutely continuous component”);
(3) p(ε) ≥ 0 by definition as a probability density.
These restrictions on p(ε) necessarily do not allow for
arbitrary Fourier transforms p̂(y).

7. Approximation of W (Φ)W (Φ)W (Φ) for ρρρ Close to 1

In this section we infer an analytical approximation
of the distribution function W (Φ) directly from the re-
currence system (23). The map F in the recurrence sys-
tem (23) is approximated by the step function Fapp:

Fapp(Φ) = sign(Φ)π , Φ ∈ [−π ,π). (62)

As will be derived further below, from the map Fapp and
the disorder distribution (2) one obtains the probability
density in the form

Wapp(Φ) =
1

4αε∗ ∑
r∈Z

fr(Φ),

fr = (1−|zr|)Θ(1−|zr|), zr =
Φ−Ωr

4αε∗

(63)

with Ωr = −π + Ω + 2πr. In Figs. 6 and 7 we exem-
plarily compare Fapp with F , and Wapp(Φ) with W (Φ)
and WN(Φ), respectively, where the latter was experi-
mentally produced by computer for a single disorder
configuration with N = 106. The parameter chosen,
K = 2.5 (which implies ρ = 0.965521), is already too
large for a good quantitative correspondence; but in the
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Fig. 7. Comparison of three methods cor-
responding to Fig. 6 with K = 2.5: direct
simulation of W∗ ≡ WN(Φ) as in Fig. 1
with N = 106; analytical approximation by
W∗ ≡ Wapp(Φ) (triangle curve); numerical
solution of the functional equation for W∗ ≡
W (Φ), supposed to give the “true” curve in
the limit N → ∞ (dashed curve). The latter
coincides closely with the empirical curve.

interval 0 ≤ K ≤ 2.0 the three curves coincide graphi-
cally.

In order to prove (63), it is first observed that the
phases Φn of the recursion (23) are taken modulo 2π .
Thus, the function Fapp simply maps the half-open in-
terval Φ ∈ [−π ,π) into the constant −π :

Fapp(Φ) =−π modulo 2π , −π ≤Φ < π . (64)

The probability density for Φ follows from the def-
inition (32) of WN(Φ), from the recursion (23) with
Φn = −π + Ω + 2α(εn− εn−1), and the configuration
average in the limit N→ ∞:

Wapp(Φ) =

∑
r∈Z

∫
dεdε ′ p(ε)p(ε ′)δ (Φ−Ωr−2α(ε ′ − ε)),

Ωr =−π + Ω + 2πr.

(65)

The normalization is fulfilled:∫ π

−π
dΦWapp(Φ) = 1. (66)

For the disorder distribution (2), integration with re-
spect to ε ′ leads to

Wapp(Φ) =
1

8α(ε∗)2 ∑
r∈Z

∫
dε Θ(ε∗ − |ε|)
·Θ(ε∗ − |ε + 2ε∗zr|)

=
1

8αε∗ ∑
r∈Z

∫ 1

−1
dyΘ(1−|y|)
·Θ(1−|y + 2zr|),

y = ε/ε∗.

(67)

The integral in (67) has the symmetry zr → −zr and
is zero, if |zr| > 1. On the other hand, if |zr| < 1, the
integral is equal to the length ∆ of the overlap interval
of the the two Θ functions in (67). This interval is linear
in |zr|, and from the extreme cases ∆(|zr|= 0) = 2 and
∆(|zr|= 1) = 0 one immediately finds ∆ = 2(1−|zr|).
Thus, we end up with the result (63).

How does Wapp look like as a function of Φ? It is
obviously continuous, and it is not hard to prove that
it has exactly one peak maximum at Φp and two kinks
at Φ±. The three points form a triangle (modulo 2π)
which is superimposed over a constant level W0, which
is zero for low K values. We remind that Φ and Ω are
reduced to the half-open interval [−π ,π). There are
unique integers r0, r1, r2 with zr0 = 0, which deter-
mines the peak, and the conditions zr1 = 1, zr2 = −1
give the locations of the two kinks:

Φp = Ωr0 modulo 2π ,

Φ+ = +4αε∗+ Ωr1 modulo 2π ,

Φ− =−4αε∗+ Ωr2 modulo 2π .

(68)

For example, for K = 1 we have Ω =−0.86592 which
leads to Φp = 2.27567, Φ+ = 2.87567, and Φ− =
1.67567 corresponding to the integers r0 = r1 = r2 = 1.
The corresponding Wapp reproduces the empirical dis-
tribution of Fig. 1 within about 1% relative deviations.

By continuity of Wapp(Φ), the constant level W0 is
given by W0 = Wapp(Φ+) = Wapp(Φ−). In order that
W0 > 0, there must exist at least one integer r �= r1 or
r �= r2 such that

|zr(Φ+)|< 1, r �= r1, or

|zr(Φ−)|< 1, r �= r2.
(69)
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Fig. 8. Lyapunov exponent Λ as a func-
tion of the wave number K. Comparison of
the analytical expression Λapp (solid line)
and the numerical solution of the func-
tional equation for W (Φ). The analytical re-
sult should be asymptotically exact in the
limit K → 0 (reflection coefficient ρ → 1).
The dashed curve, supposed to give the
“true” value, was calculated at the discrete
points Ki = i/4, i = 1, . . . ,20; the points
were joined by straight dashed lines.

This amounts to the condition, that a natural number n
must exist with the property

2π n < 8αε∗ for at least one n ∈ {1,2, . . .}. (70)

With ε∗ = 0.1, d/w = 1.5, α ≡ dK we find that wK >
π/0.6≈ 5.236 gives rise to W0 > 0. In other words, in
the interval 0 ≤ K ≤ 2, where Wapp is a good quanti-
tative approximation with the disorder distribution (2),
the level W0 = 0.

The Lyapunov exponent related to Wapp(Φ) can be
given in the following closed form:

Λapp =− ∑
s=1,2,...

(−ρ)s

s3
sin2(2αε∗s)

8α2(ε∗)2 cos(sΩ)

− 1
2

ln[1−ρ2].

(71)

To prove (71), we will first restrict to sufficiently low
K values which implies that W0 = 0. Furthermore, the
integers in (68), r0 = r1 = r2 = 1, lead to

Φp = π + Ω, Φ− =−4αε∗+ π + Ω,

Φ+ = 4αε∗+ π + Ω, W (Φp) = 1/(4αε∗),
W (Φ−) = 0, W (Φ+) = 0.

(72)

The result for low K will continuously extend to ar-
bitary K > 0. In view of (33) and (52), the integral to
be carried out reads

Λapp
1 =

∫ π

−π
dΦWapp(Φ) ln[1 + ρ2−2ρ cos(Φ)]

=−2 ∑
s=1,2,...

ρ s

s
Ls,

Ls =
∫ π

−π
dΦWapp cos(sΦ).

(73)

For low K, the distribution Wapp(Φ) is of triangular
form and of the type shown in Figure 1. There are
two contributions from the intervals Φ− ≤Φ≤Φp and
Φp ≤Φ≤Φ+, where Wapp is linear in Φ:

Ls =
1

16α2(ε∗)2

{∫ Φp

Φ−
dΦ(Φ−Φ−)

+
∫ Φ+

Φp
dΦ(−Φ+ Φ+)

}
cos(sΦ).

(74)

Evaluation of the integral leads to

Ls = (−1)s sin2(2αε∗s)
8α2(ε∗)2s2 cos(sΩ), (75)

which in view of (33) gives the result (71). In Fig. 8 we
display Λapp in the interval 0.2 ≤ wK ≤ 5, in compar-
ison with the numerical solution of the integral equa-
tion (34) in connection with (39). As it is seen, there is
the expected agreement for low K values, specifically
for K < 2.

8. Conclusions

The Lyapunov exponent was determined by three
independent methods: (1) the direct simulation of the
relevant transfer matrix phases; (2) the numerical so-
lution of a functional equation for the distribution of
the phases; (3) analytical asymptotic formulas for the
distribution function. Method (1) was feasible up to
about 106 scatterers and delivered useful results in the
low wave number range (high reflectivity), for approx-
imately K < 5. With increasing wave number the noise
level made it more and more difficult to infer a dis-
tribution function by means of computer simulation.
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Method (2) turned out to be the most versatile. A cu-
mulative distribution, i. e. a monotonically increasing
function, had to be calculated from a linear integral
equation; the computer code turned out to be particu-
larly stable and accurate. With the aid of this code, the
asymptotic analytical distributions were corroborated
with the result that the low wave number asymptotics is
quantitavely reliable for 0≤ K < 2, and the high wave
number asymptotics for K > 6. In the latter case, sur-
prisingly, the Lyapunov exponent could be negative, in
principle. It was always positive, if the Fourier tran-
form of the disorder distribution p(ε) was bounded
from below in the following way: if p(ε) = p(−ε)
is symmetric, then p̂(y) =

∫
p(ε)cos(yε) has to obey

p̂ >−1/2. We examined several distributions of finite
support and of different degree of continuity which all
fulfilled this condition. We did not see a contradiction
to the main theorem of [22], where the assumptions on
the disorder distribution function are formulated in di-
rect rather than in Fourier space.

Appendix

A. Computer Code for the Integral Equation (34)

We briefly outline the computer code to solve the in-
tegral equation (34). This is done by means of a Math-
ematica “module” [28]. The basic interval x ∈ [−π ,π ]
is divided into N equal subintervals with abscissas xi =
−π + 2π (i− 1)/N, i = 1,2, . . .N + 1. The unknown
function values Vi ≡ V (xi) are labelled as Vi → zi,
where z is a generating variable. For each xi, one deter-
mines xi→ Xi = xi−Ω + 2αη , Xi→ Y = F−1(Xi,ρ).
The parameter Ω is defined below (22), and easily de-
termined, modulo 2π , for a square barrier potential; for
explicit expressions of the latter see for e. g. [29]. By
the relation (25) one calculates the inverse function as
F−1(Xi,ρ) = Xi + 2arg[1 + ρ exp(−iXi)]. In order to
integrate with respect to η , one divides the integra-
tion interval η ∈ [−ε∗,ε∗] into M equal subintervals
with abscissas η1, . . .ηM+1. Integration is done with
the trapezoidal rule. Not all points Yi j ≡Y (xi,η j) lie in
the basic interval. Before reduction it is wise to identify
the smallest and largest abscissa, whose function val-
ues have to be multiplied by the factor 1/2 in the trape-
zoidal rule, while the remaining values get the weight
one and are on equal footing. If the reduced value of
Yi j falls into the interval [xn,xn+1), then the function
value is linearly interpolated so that Yi j → V (Yi j) ≡
ai jzn + bi jzn+1 + ni j, where ni j is an integer deter-
mined by the condition V (Yi j + 2π) = V (Yi j)+ 1. Ex-

ample: If Yi j =−2π , then we have to add 2π for reduc-
tion into the basic interval (−π ,π), and thus V (Yi j) ≡
V (Yi j +2π−2π)= V (Yi j +2π)−1. The integral equa-
tion (34) is thus replaced by (N + 1) linear equations
V (xi) = Li (V (x1), . . . ,V (xN+1)), i = 1,2, . . .N +1. The
first equation is identically fulfilled because on the
left-hand side of (34) V (x1) ≡ V (−π) = 0, and on
the right-hand side Y (x1) ≡ Y0. In the last equation,
because of (35), V (xN+1) = V (π) = 1, whereas on
the right-hand side of (34) Y (xN+1,η j) ≡ Y (π ,η j) =
Y0(η j)+2π ; thus V (Y (π ,η j))−V (Y0(η j)) = V (Y0)+
1−V (Y0) = 1. As a consequence, the first and last
equation are identically fulfilled, and we stay with
(N−1) equations for the (N−1) powers V (xi)←→ zi,
i = 2,3, . . . ,N. In the equations one has to replace
z↔ V (−π) by zero, and zN+1 ↔ V (π) by the num-
ber 1. The coefficient matrix of the powers z2, . . . ,zN

is extracted by the Mathematica command “Coeffi-
cient[..]”. One run, with N = 200 and M = 123, on a
modern notebook takes about 10 s.

B. Proofs of Formulas Used

In the following we state and prove formulas which
were used in the main text and are required in the next
appendices. Most statements refer to the map F :

F(Φ,ρ) = Φ+ 2γ(Φ,ρ),

tan(γ) =
ρ sin(Φ)

1−ρ cos(Φ)
.

(B.1)

(I)
∂F(x,ρ)

∂x

≡ F ′(x,ρ) =
1−ρ2

1 + ρ2−2ρ cos(x)
, ρ2 < 1.

(B.2)

(II) F−1(x,ρ) = F(x,−ρ) or

F(F(x,−ρ),ρ) = F(F(x,ρ),−ρ)≡ x.
(B.3)

(III)
∂F(z,ρ)

∂z

≡ F ′(z,ρ) =
1 + ρ2 + 2ρ cos(x)

1−ρ2 ,

x = F(z,ρ).

(B.4)

(IV) exp[iz] =
ρ + exp[ix]

1 + ρ exp[ix]
, x = F(z,ρ).

(IVa) cos(z) =
2ρ + cos(x)+ ρ2 cos(x)

1 + ρ2 + 2ρ cos(x)
.

(IVb) sin(z) =
(1−ρ2)sin(x)

1 + ρ2 + 2ρ cos(x)
.

(B.5)
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(V) F(x,ρ)

≡ x + 2γ(x,ρ) = x + 2 ∑
n=1,2,...

ρn sin(nx)
n

,

ρ2 < 1.

(B.6)

(VI) ln(1−2ρ cos(x)+ ρ2)

=−2 ∑
n=1,2,...

ρn cos(nx)
n

, ρ2 < 1.
(B.7)

Statement (I) follows after implicit differentiation
of tan(γ).

To prove (II), one integrates (I) as

y≡ F(x,ρ)

= (1−ρ2)
∫ x

0
du

1
1 + ρ2−2ρ cos(u)

= 2arctan
[

1−ρ
1 + ρ

tan(x/2)
]
,

(B.8)

which implies

(1 + ρ) tan[y/2] = (1−ρ) tan[x/2], (B.9)

and thus the symmetry {y↔ x,ρ ↔−ρ}.
Statement (III) is proved with the aid of (II):

∂z
∂x

=
∂F(x,−ρ)

∂x
≡ F ′(x,−ρ). (B.10)

On the other hand,

F ′(z,ρ)
∂z
∂x
≡ ∂

∂x
F(z(x),ρ)

≡ ∂
∂x

F(F−1(x,ρ),ρ) = 1,

(B.11)

which, together with (B.10) and (I), implies that

F ′(z,ρ) =
1

F ′(x,−ρ)
=

1 + ρ2 + 2ρ cos(x)
1−ρ2 . (B.12)

Starting with (IVa), we have from (III) and (I)

F ′(z,ρ) =
1 + ρ2 + 2ρ cos(x)

1−ρ2

=
1−ρ2

1 + ρ2−2ρ cos(z)
,

(B.13)

which, when solved for cos(z), gives (IVa). To
show (IVb), one uses sin(z) = ±√1− cos2(z) and
fixes the sign by choosing a small positive x, which

is connected with a positive z. The real and imaginary
parts of (IV) are consistent with (IVa) and (IVb).

As to (V), one uses (I) and formula 1.447 3. of [30]:

F ′(x,ρ)≡ 1−ρ2

1 + ρ2−2ρ cos(x)
= 1 + 2 ∑

n=1,2,...

ρn cos(nx).
(B.14)

Integration from zero to x proves (V).
Statement (VI) is proved similarly, this time with the

aid of formula 1.447 1. of [30]:

d
dx

ln(1−2ρ cos(x)+ ρ2)

=
2ρ sin(x)

1−2ρ cos(x)+ ρ2 = 2 ∑
n=1,2,...

ρn sin(nx).
(B.15)

Integration from zero to x leads to

ln(1−2ρ cos(x)+ ρ2)−2ln(1−ρ)

=−2 ∑
n=1,2,...

ρn cos(nx)
n

+ 2 ∑
n=1,2,...

ρn

n
,

(B.16)

where the latter sum is exactly equal to the constant
term on the left-hand side.

C. Derivation of the Functional Equation for W (Φ)

In this appendix we derive the integral equation (34)
for V (x) and its connection (36) with the distribution
function W (Φ). The manipulations to follow are for a
given wave number K, so the reflection coefficient ρ is
a fixed parameter and will not be indicated as an inde-
pendent variable. We start with the definition (32)

WN(Φ) =
1
N

n

∑
n=1

δper(Φ−Φn), Φ∈ [−π ,π), (C.1)

and assume that limN→∞ WN is equivalent to the aver-
age with respect to the scatterer configurations. This
amounts to average with respect to the independent
random numbers ε1,ε2, . . .:

W (Φ) = lim
N→∞
〈WN(Φ)〉N , (C.2)

where

〈 f 〉n =
∫

Rn
f dε1dε2 . . .dεn p(ε1)p(ε2) . . . p(εn). (C.3)
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By the recurrence relation (23), the phase Φn ≡
Φn(ε1,ε2, . . . ,εn) depends on the random numbers εi
as follows:

Φn = 2αεn + Hn−1,

Hn−1 = F(Φn−1)−2αεn−1 + Ω,

H0 = Ω−θ + σ + ϕ0,

(C.4)

where Hn−1 does not depend on the random number εn.
This suggests to introduce the conditional probability
density

UN(x) =
1
N

N−1

∑
n=0
〈δper(x−Hn)〉n (C.5)

to write

〈WN(Φ)〉N =
∫

R
dε p(ε)UN(Φ−2αε). (C.6)

Both UN(x) and WN(x) are 2π-periodic in x and nor-
malized to 1 in the interval x∈ (−π ,π). In an ensemble
of arrays with n = 1,2, . . . ,N scatterers, UN(Φ−2αε)
is the average conditional probability density for the
phase Φ with the last scatterer position of each array
fixed.

We introduce an integral transform and a further re-
duction by the recursion (23):

〈δper(x−Hn)〉n
=
∫ π

−π
dy〈δper(y−Φn)δper(x−F(y)+ 2αεn−Ω)〉n

=
∫

R
dη p(η)

∫ π

−π
dy〈δper(y−2αη−Hn−1)〉n−1

·δper(x−F(y)+ 2αη−Ω). (C.7)

Since

UN(x) =
1
N

δper(x−H0)+
1
N

N−1

∑
n=1
〈δper(x−Hn)〉n, (C.8)

where in the limit N→∞ one can neglect the first term,
and after resummation n−1→ n, we obtain for large N

UN(x) =∫
R

dη p(η)
∫ π

−π
dy

1
N

N−1

∑
n=1
〈δper(y−2αη−Hn−1)〉n−1

·δper(x−F(y)+ 2αη−Ω) =
N−1

N

∫
R

dη p(η)
∫ π

−π
dy UN−1(y−2αη)

·δper(x−F(y)+ 2αη−Ω),

(C.9)

and in the limit N→ ∞

U(x) =∫
R

dη p(η)
∫ π

−π
dyδper(x−F(y)

+ 2αη−Ω)U(y−2αη).

(C.10)

In order to carry out the y integration, it is first ob-
served that, because of statement (I) of Appendix B,
F ′(y) > 0. Thus, the map y→ F is one to one for all y;
in particular F(y) maps the interval y ∈ [−π ,π) onto it
with F(−π) = −π and F(π) = π . The zero y = y∗ of
the argument of δper in (C.10) is unique. To see this, let
us assume a further zero y∗∗ with (y∗,y∗∗) ∈ [−π ,π).
Then there exist integers r∗ and r∗∗ such that

x−F(y∗)−Ω + 2αη + 2πr∗

= x−F(y∗∗)−Ω + 2αη + 2πr∗∗
(C.11)

or

F(y∗∗)−F(y∗) = 2π(r∗∗− r∗). (C.12)

But since F maps the half-open interval [−π ,π) bi-
jectively, we have −2π < F(y∗∗)−F(y∗) < 2π which
implies r∗∗= r∗; thus F(y∗∗) = F(y∗) and y∗ = y∗∗. On
the other hand, since F is onto [−π ,π), one zero exists.
The y integration in (C.10) now immediatley leads to
the integral equation

U(x) =
∫

R
dη p(η)

1
F ′(y∗)

U(y∗ −2αη),

y∗ = F−1(x + 2αη−Ω),
(C.13)

W (x) =
∫

R
dε p(ε)U(x−2αε). (C.14)

Now we introduce the cumulative density (conditional
probability function)

V (x) =
∫ x

−π
dyU(y). (C.15)

By definition, and because of the normalization and pe-
riodicity of U , it has the properties

V (−π) = 0, V (π) = 1,

V (x + 2π) = V (x)+ 1.
(C.16)

To obtain an integral equation for V , one inte-
grates (C.13) with respect to x and introduces on the
right-hand side the one to one transformation

x→ y∗ ≡ F−1(x + 2αη−Ω). (C.17)
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We differentiate the relation F(y∗(x)) = x + 2αη −Ω
and introduce the notation Y (x)≡ y∗(x) to obtain dx =
dY F ′(Y ) which leads to the integral equation

V (x) =
∫

R
dη p(η) [V (Y )−V(Y0)] (C.18)

with Y (x) = F−1(x−2αη−Ω) and Y0 = Y (x =−π).
Finally, for the connection between V and W , one

integrates the right-hand side of (C.14) partially with
respect to ε and exploites that p(ε) has finite support:

W (x) =−
∫

R
dε p′(ε)

∫ ε

ε0

dη U(x−2αη)

=
1

2α

∫
R

dε p′(ε)
∫ x−2αε

−π
dyU(y),

W (x) =
1

2α

∫
R

dε p′(ε)V (x−2αε).

(C.19)

D. W (Φ) in the Regular Lattice Case

The disorder distribution is now p(ε) = δ (ε), which
reduces (C.14) and (C.13) to W (x) = U(x) and

Wreg(x) =
1

F ′(Y )
Wreg(Y ),

Y (x) = F−1(x−Ω).
(D.1)

This functional equation has a simple solution:

Wreg(x) = δ (x− x∗), F(x∗) = x∗ −Ω, (D.2)

where x∗ is a fixed point with Y = x∗, or F(x∗) = x∗ −
Ω, which implies F ′(Y (x∗)) = 1.

As it turns out, there exist two fixed points, but
within band gaps only, which are characterized by the
condition (see also p. 148 of [31])

cos2(Ω/2) > τ2 or ρ2 > sin2(Ω/2). (D.3)

Clearly, among the two existing fixed points, the stable
one has to be taken.

For band energies the situation is more involved.
We solved the eigenvalue problem of the transfer ma-
trix Mn ≡ M1 with ζn ≡ 1. The initial amplitude vec-
tor {a0,b0}, taken on the unit circle, was expressed in
terms of the eigenvectors e1, e2. The matrix power then
has the structure

(M1)n = c exp[inλ ]e1 + d exp[−inλ ]e2 (D.4)

with the complex constants c, d expresssed in terms
of the initial phase a0/b0 = exp[iϕ0] and components
of the eigenvectors. The decisive point now is that,
according to Jacobi’s theorem [27], the phases φn ≡
nλ , n = 1,2, . . . , cover the unit circle densely and
uniformly with distribution W (φ) = 1/(2π), provided
λ = λ (K) is irrational modulo (2π), which is the case
for almost all wave numbers K. The constant distri-
bution of φ has to be transformed to the distribution
of the phases ϕn of an/bn = exp[iϕn]. Omitting de-
tails, we give the final result in terms of the phase
Φ = ϕ + θ + σ , see (22):

Wreg(Φ) =
1

2π

√
1−R2

1 + Rsin(Φ−Ω/2)
,

R =
ρ

sin(Ω/2)
, R2 < 1.

(D.5)

One can show that∫ π

−π
dΦWreg(Φ) ln(1−2ρ cos(Φ)+ ρ2)

= ln(1−ρ2),
(D.6)

which ensures that the Lyapunov exponent, see (33), is
exactly zero.

In the following we prove that Wreg fulfills the func-
tional equation (D.1). We use statements (III), (IVa),
and (IVb) of Appendix B to write

1
F ′(Y (x))

=
1−ρ2

1 + ρ2 + 2ρ cos(x−Ω)
,

Y (x) = F−1(x−Ω),
(D.7)

cos(Y ) =
2ρ + cos(x−Ω)+ ρ2 cos(x−Ω)

1 + ρ2 + 2ρ cos(x−Ω)
,

sin(Y ) =
(1−ρ2)sin(x−Ω)

1 + ρ2 + 2ρ cos(x−Ω)
.

(D.8)

We insert (D.5) and (D.7) into (D.1), introduce the ab-
breviation ω = Ω/2, and solve for sin(Y −ω), which
appears on the right-hand side of (D.1):

sin(Y −ω) = [−2ρ sin(ω)−2cos(x−2ω)sin(ω)

+sin(x−ω)−ρ2 sin(x−ω)
][

1 + ρ2

−2ρ cos(x−2ω)
]−1 =

[−2ρ sin(ω)+ sin(x−3ω)

−ρ2 sin(x−ω)
][

1 + ρ2−2ρ cos(x−2ω)
]−1

,

ω = Ω/2. (D.9)
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In the next step, we write the left-hand side of (D.9) as

sin(Y−ω) = sin(Y )cos(ω)−cos(Y )sin(ω), (D.10)

and insert the expressions given in (D.8). After elemen-
tary trigonometric manipulations, one recovers exactly
the right-hand side of (D.9), which proves that Wreg ful-
fills the functional equation (D.1).
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