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The Lennard-Jones(12-6) and the Exponential-6 potential functions are commonly used in compu-
tational softwares for describing the van der Waals interaction energy. Some softwares allow switch-
ing between these two potentials under prescribed condition(s) that attempt to connect the parameter
relationship between the two functions. Here we propose a technique by which the parameter rela-
tionship between both potentials is extracted by simultaneously imposing an equal force constant at
the well depth’s minimum and an equal mean interatomic energy from the point of equilibrium to the
point of total separation. The former imposition induces good agreement for the interatomic compres-
sion and a small change in the interatomic distance near the equilibrium while the latter enables good
agreement for large interatomic separation. The excellent agreement exhibited by the plots validates
the technique of combined criteria proposed herein.
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1. Introduction

Arising from the introduction of the Lennard-Jones
potential energy function [1 – 3]

ULJ =
A
rm − B

rn , (0 < n < m), (1)

a number of molecular mechanics force fields ap-
ply the Lennard-Jones function for describing the in-
teraction energy between non-bonded neutral atoms.
A majority of these force fields adopt the Lennard-
Jones(12-6) function (e. g. [4 – 12]), followed by the
Lennard-Jones(9-6) function (e. g. [13, 14]). Less com-
mon are the Lennard-Jones(12-10), which is avail-
able in AMBER [11] as an option in addition to the
usual Lennard-Jones(12-6) function, and the buffered
Lennard-Jones(14-7) function [15]. Other force fields
adopt the Exponential-6 potential function (e. g. [16 –
21]), which is a special case of the Buckingham poten-
tial function [22]

UB = aexp(−br)− c
rη (2)

with η = 6. In DREIDING [8] and UFF [10] both
the Lennard-Jones(12-6) and the Exponential-6 func-
tions are available as options. It has been appreciated
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that the Exponential-6 function is more stable than the
Lennard-Jones function [10]. As a result, a loose form
of the Exponential-6 function was introduced as

UX6 = D

{
6

ξ −6
exp
[
ξ
(

1− r
R

)]
− ξ

ξ −6

(
R
r

)6
}

,

(3)

where substitution by ξ = 13.772 and ξ = 12 fulfills
the force constant

k =

(
∂2ULJ(12-6)

∂r2

)
r=R

=

(
∂2UX6

∂r2

)
r=R

(4)

and the long range relationship

lim
r→∞

ULJ(12-6) = lim
r→∞

UX6, (5)

respectively, with reference to the Lennard-Jones(12-
6) function [8]. A drawback in the use of these two
values is obvious during the switch of this factor in
the intermediate range. Recently an intermediate scal-
ing factor of ξ = 12.6533 was obtained by imposing
the following equal energy integral from equilibrium
to dissociation:∫ ∞

R
ULJ(12-6)dr =

∫ ∞

R
UX6dr. (6)
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With 3 scaling factors instead of 2, the Exponential-6
function is split into 3 parts with 2 switches in the scal-
ing factor. An additional switch reduces the abruptness
in the van der Waals energy description, hence result-
ing in a comparatively smoother Exponential-6 poten-
tial energy curve [23]. In the present paper, an attempt
is made to propose the use of only one scaling factor to
ensure a perfectly smooth potential energy curve, while
maintaining an almost exact agreement not only with
the commonly used Lennard-Jones(12-6) function, but
also to any Lennard-Jones-type of function.

2. Analysis

The energy integral approach was found to be useful
for obtaining the shape parameter of a potential func-
tion from a group of parameters in another potential
function. Unlike the limit approach, e. g. (5), the use
of an energy integral from equilibrium interatomic dis-
tance to dissociation provides a shape parameter that
ensures minimal discrepancies [24 – 26]. Furthermore
the limit approach is of little practical value as most
computational softwares impose energy cut-off beyond
certain range of interatomic distance. However, the en-
ergy integral approach does not ensure good agreement
near the minimum well depth. The imposition of an
equal second-order derivative or a related approach en-
sures good correlation near the minimum well depth,
but not for a longer range [27 – 30].

To achieve good correlation over the whole range,
i. e. both in the near range and the far range, there is
need to implement both the imposition of an equal en-
ergy curvature and an equal energy integral. This will,
of course, lead to two different values of the scaling
factor. As such we herein consider the Buckingham
function in its loose form

UB = D
{

η
ξ −η

exp
[
ξ
(

1− r
R

)]
− ξ

ξ −η

(
R
r

)η}
,

(7)

which contains two shape parameters, ξ and η , instead
of just one. The Lennard-Jones function considered
herein is of the general form

ULJ = D
[

n
m−n

(
R
r

)m

− m
m−n

(
R
r

)n]
(8)

with m and n as the two shape parameters. Here, the
parameters ξ and m can be viewed as the repulsive in-
dices while the parameters η and n are the attractive
indices of the potential energy functions.

The imposition of an equal second-order derivative
at the minimum well depth(

∂2ULJ

∂r2

)
r=R

=

(
∂2UB

∂r2

)
r=R

(9)

gives the product of the Lennard-Jones indices as

mn =
ξ η (ξ −η −1)

ξ −η
, (10)

while the imposition of an equal energy integral from
the well depth’s minimum to infinite interatomic dis-
tance ∫ ∞

R
ULJdr =

∫ ∞

R
UBdr (11)

leads to

1−m−n
(m−1)(n−1)

=
1

ξ −η

(
η
ξ
− ξ

η −1

)
. (12)

The two independent relations described by (10)
and (12) are useful for obtaining the Lennard-Jones
shape parameters (m,n) from those of the Buck-
ingham potential (ξ ,η) and vice versa. The corre-
sponding Buckingham parameters to the conventional
Lennard-Jones(12-6) can be obtained by substituting
m = 2n = 12 into (10) and (12); solving these equa-
tions gives ξ = 14.3863 and η = 5.6518. In the same
way, by substituting 2m = 3n = 18 into (10) and (12)
for the case of the Lennard-Jones(9-6) function enables
one to solve the Buckingham parameters numerically
as ξ = 11.9507 and η = 5.3212.

In order to provide a proper measure between the
two potentials, we consider the Hilbert space for these
functions. The distance between the two functions UB
and ULJ in an inner product space is written as

d(UB,ULJ) = ‖UB −ULJ‖, (13)

where the norm of the function UB −ULJ is given in
terms of the inner products as

‖UB −ULJ‖ = 〈UB −ULJ , UB −ULJ〉 1
2 . (14)

The inner product 〈UB −ULJ , UB −ULJ〉 is defined in
the space of real-valued functions with domain to the
real line ℜ as

〈UB −ULJ , UB −ULJ〉
=
∫

ℜ (UB −ULJ)
(
UB −ULJ,

)
dr,

(15)
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m n ξ η α β γ d(UB,ULJ) Ref.
12 6 13.772 6 0.168715 −0.33962 0.171821 0.030210 D

√
R [8]

12 6 12 6 0.183081 −0.35309 0.171821 0.042563 D
√

R [8]
12 6 14.3863 5.6518 0.171468 −0.34277 0.171821 0.022717 D

√
R This paper

Table 1. The distance d(UB,ULJ)
between the Buckingham and
the Lennard-Jones(12-6) func-
tions based on the Hilbert space.

where the bar denotes the conjugate. In this analysis,
both potential functions do not consist of imaginary
parts, hence

(UB −ULJ)
(
UB −ULJ

)
= (UB −ULJ)

2 . (16)

Substituting (16) into (15) and taking the integral leads
to the distance between both potential functions as

d(UB,ULJ) = D
√

R (α + β + γ), (17)

where

α =
ξ η

(ξ −η)2

[
η

2ξ 2 −
2

ξ + η
+

ξ
η(2η −1)

]
, (18)

β = − 2
(ξ −η)(m−n)

[
ηn

ξ + m
− ηm

ξ + n

− ξ n
η + m−1

+
ξ m

η + n−1

]
,

(19)

γ =
mn

(m−n)2

[
n

m(2m−1)
− 2

m+ n−1
+

m
n(2n−1)

]
.

(20)

Table 1 compares the distance between both po-
tential functions in the inner product space. It can be
seen that the use of a combined equal force constant
and an equal energy integral gives the lowest distance
compared to a previous approach [8]. The present ap-
proach gives the distance between the two potentials
as three quarter and half of the distances based on
DREIDING’s [8] near range indices ξ = 13.772 and
η = 6, and far ranges indices ξ = 12 and η = 6, re-
spectively.

3. Results and Discussion

To test the validity of the relations described in (10)
and (12) in a practical sense, the dimensionless inter-
action energy (U/D) versus the dimensionless inter-
atomic distance (r/R) is plotted for the Lennard-Jones
(12-6) potential

ULJ(12-6)

D
=
(

R
r

)12

−2
(

R
r

)6

(21)

Fig. 1. Normalized Lennard-Jones(12-6) and Lennard-
Jones(9-6) potentials compared with the Buckingham forms
described by (21) – (24).

and the Lennard-Jones(9-6) potential

ULJ(9-6)

D
= 2

(
R
r

)9

−3
(

R
r

)6

(22)

with their corresponding counterparts in the Bucking-
ham forms

UB1

D
= 0.6471e14.3863(1− r

R )−1.6471
(

R
r

)5.6518

(23)

and

UB2

D
= 0.8027e11.9507(1− r

R)−1.8027
(

R
r

)5.3212

, (24)

respectively, in Figure 1. This figure shows the plots
of the Lennard-Jones(12-6) and Lennard-Jones(9-6)
potentials in triangles and circles, respectively, while
the Buckingham potentials with (ξ ,η) = (14.3863,
5.6518) and (11.9507,5.3212) are denoted by thin and
bold lines, respectively.

Since the interatomic force is defined as

F = −∂U
∂r

, (25)

we introduce the normalized interatomic force defined
herein as

F∗ =
R
D

(
∂U
∂r

)
(26)
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Fig. 2. Normalized interatomic force of the Lennard-
Jones(12-6) and Lennard-Jones(9-6) potentials compared
with the Buckingham forms.

to give

FB
∗ =

ξ η
ξ −η

{(
R
r

)η+1

− exp
[
ξ
(

1− r
R

)]}
(27)

and

FLJ
∗ =

mn
m−n

[(
R
r

)n+1

−
(

R
r

)m+1
]

(28)

corresponding to the Buckingham and the Lennard-
Jones potentials, respectively. See Fig. 2 for the cor-
responding normalized plots of the interatomic force.
The excellent agreement of the interatomic force ob-
served between both pairs of corresponding potential
functions attest the validity of the parameter relation-
ships of (10) and (12).

4. Conclusions

It was shown that any Lennard-Jones-type poten-
tial energy function can be expressed in terms of an
Exponential-6-type function by modifying the latter’s
repulsive and attractive indices. The adjusted repulsive
and attractive indices can be obtained by equating the
force constant and the energy integral. The existence of
the attractive index, η , removes the requirement for the
scaling factor, ξ , to be adjustable. The fixed value of
the scaling factor ensures that the Exponential-6-type
potential function is perfectly smooth. The two sets of
parameter relationships of (10) and (12) also allow any
given Exponential-6-type parameters to be converted
into those of the Lennard-Jones-type potential for ap-
plication in computational softwares adopting the latter
function for quantifying the van der Waals interaction
energy.
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