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We study, within a mean-field approach, the stationary states of the kinetic metamagnetic
spin —3/2 Blume-Emery-Griffiths model under the presence of a time-varying (sinusoidal) mag-
netic field. We use the Glauber-type stochastic dynamics to describe the time evolution of the system.
The behaviour of the time dependence of the average order parameters in a period, which are also
called the dynamic order parameters, as functions of the reduced temperature are investigated. The
natures (continuous or discontinuous) of the transitions are characterized by investigating the be-
haviours of the thermal variations of the dynamic order parameters. The dynamic phase transition
points are obtained and the phase diagrams are constructed in the plane of the reduced temperature
(T') and the amplitude of the magnetic field (%), and sixteen fundamental types of phase diagrams are
found. The phase diagrams exhibit one, two, three or four dynamic tricritical points and a dynamic
double-critical end point, and, besides a disordered and three ordered phases, seven coexistence re-
gions or mixed phases depending on the interaction parameters. We also investigate the influence of
the reduced biquadratic exchange parameter (k) and obtain nine different phase diagram topologies

in the (k, T') plane.
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1. Introduction

In our preceding paper [1], referred to as paper I in
the following, we presented a study, within a mean-
field approach, of the stationary states of the kinetic
metamagnetic spin —3/2 Blume-Capel (BC) model in
the presence of a time-dependent oscillating external
magnetic field. We used the Glauber-type stochastic
dynamics to describe the time evolution of the system.
We have studied the time-dependent behaviour of the
average submagnetizations in a period, which are also
called the dynamic submagnetizations, as functions of
the reduced temperature. The dynamic phase transition
(DPT) points have been calculated by investigating the
behaviour of the average submagnetizations in a period
as functions of the reduced temperature. We presented
the phase diagrams in the plane of the reduced tem-
perature (7)) and the amplitude of the magnetic field
(h). We found six different phase diagram topologies.
The system also exhibited one, two or three tricritical
points depending upon the interaction parameters. We
have investigated the influence of the reduced crystal-

field interaction (d) and we obtain five different phase
diagram topologies in the (d,T) plane. We have also
studied the influence of the frequency on the phase
boundaries as well as the dynamic tricritical point. We
found that the topologies of the phase diagrams slightly
change. In paper I, we did not study the influence of the
biquadratic exchange interaction (K) due to the reason
that the spin —3/2 BC model only contains a single-
ion potential or crystal-field interaction in addition to
the bilinear exchange interaction (J). The biquadratic
exchange interaction is very important because it pro-
duces the ferroquadrupolar or simply the quadrupo-
lar phase; hence, one has to consider the quadrupolar
order parameters besides the magnetization. The pur-
pose of the present paper is, therefore, to study within
the mean-field approach the stationary states of the ki-
netic metamagnetic spin —3 /2 Blume-Emery-Griffiths
(BEG) model Hamiltonian with bilinear (J) and bi-
quadratic (K) nearest-neighbour pair interactions and
a single-ion potential or crystal-field interaction (D) in
the presence of a time-dependent oscillating external
magnetic field. We use the Glauber-type stochastic dy-
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namics to describe the time evolution of the system [2].
Especially, we investigate the time dependence of aver-
age submagnetizations and sublattice quadrupole mo-
ments, as well as the behaviour of the dynamic order
parameters as functions of the reduced temperature. In
these studies, we obtain the DPT points and construct
the phase diagrams in the (7', /) plane. We also investi-
gate the influence of the reduced biquadratic exchange
interaction (k) and present the phase diagrams in the
(k,T) plane.

It is worthwhile to mention that the existence of
quadrupolar interactions has been established in sev-
eral cubic rare-earth intermetallic compounds [3]. The
most obvious proof is possibility of a quadrupolar
phase transition, as observed for example in TmCd [4]
and TmZn [5]. Moreover, the quadrupolar interactions
may act on the nature of the magnetic phase transi-
tion in which they may change a second-order phase
transition into a first-order one, as observed, e. g., in
DySb [6], TbP [7] or TmCu [8], or vice versa as
in PrMg; [9]. On the other hand, numerous theoreti-
cal works have been worked out concerning the exis-
tence of dipolar and quadrupolar phase transitions, es-
pecially in the Ising systems, such as spin —1 [10—12],
spin —3/2[13, 14] and spin —2 [15]. Magnetic dipolar
and quadrupolar phase transitions in cubic rare-earth
intermetallic compounds have been studied in terms of
single-ion susceptibilities and within the Landau the-
ory [16]. Recently, the quadrupolar order in the § = 1
isotropic Heisenberg model with the biquadratic inter-
action has been studied by the quantum Monte Carlo
simulation [17].

On the other hand, metamagnetic systems are sys-
tems with both ferromagnetic and antiferromagnetic
couplings; they are of great interest because it is possi-
ble to induce novel kinds of critical behaviour by forc-
ing competition between these couplings, especially
by applying a magnetic field. FeCl,, FeBr,, La,CuOy,
Ni(NO3),-2H;0, dysprosium aluminum garnet (DAG)
etc. are well known metamagnets. The equilibrium be-
haviours of these metamagnets have been studied in
detail [18]. While equilibrium properties of Ising meta-
magnets have been investigated extensively, the dy-
namical aspects of the metamagnets have not been
thoroughly explored [1]. Hence, it would also be of in-
terest to learn some ething about the dynamical prop-
erties of the metamagnets.

Finally, we should also mention that the DPT
presents new challenges and there is a strong moti-
vation for analyzing it; hence, the DPT has attracted

much attention in recent years, theoretically [19]. Ex-
perimental evidence for the DPT has been found
in magnetic systems [20] and amorphous YBaCuO
films [21]. Besides the scientific interests, the study
of the DPT can inspire new methods in materi-
als manufacturing and processing, and interesting
methods in nanotechnology, such as pattern forma-
tion [22], monomolecular organic films [23], beam-
induced transformation and many others [23]. More-
over, the DPT may have played a role in the evolution
of the early universe [24].

The outline of the remaining part of this paper is
organized as follows. In Section 2, the metamagnetic
spin —3/2 BEG model is presented briefly. In Sec-
tion 3, the derivation of the mean-field dynamic equa-
tions of motion by using the Glauber-type stochastic
dynamics in the presence of a time-dependent oscillat-
ing external magnetic field is given. In Section 4, the
stationary solutions of the coupled dynamic equations
are solved and the thermal behaviours of the dynamic
submagnetizations and dynamic sublattice quadrupole
moments are studied, and, as a result, the DPT points
are calculated. Section 5 contains the presentation and
discussion of the phase diagrams. Finally, the paper
ends with a summary and conclusions of this work in
Section 6.

2. The Metamagnetic Spin -3/2 BEG Model

The magnetic moments or spins are arranged on a
regular lattice of N sites that consist of two equiva-
lent interpenetrating sublattices, denoted by A and B,
each having a total of N/2 sites. The z nearest neigh-
bours (nn) of every spin on a particular sublattice are
all on the other sublattice, precisely, each A-site is sur-
rounded by z equilavent neighbouring B-sites and each
B-site by z A-sites. On the other hand, the 7’ next-
nearest neighbours (nnn) of every spin are all on the
same lattice, namely, the number of any A-sites closest
to any given A-site or the number of any B-sites closest
to any given B-site is 7. Hence, for example z = 4 and
7' = 4 for the plane square lattice and z=6 and 7/ = 12
for the simple cubic lattice. Nevertheless, in the mean-
field approach the only relevant properties of the lattice
structure that enter are z and z’ in Section 3.

The metamagnetic spin —3/2 BEG model in the
presence of a time-dependent oscillating external mag-
netic field is defined by the Hamiltonian

H=-J) SiS;=J"Y SiSk
nn

nnn
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where the spin S; takes the values £3/2 or +1/2 at
each i site of lattice, Y, and Y., are sums over all
pairs of nn and nnn spins, respectively, J and J' are
bilinear exchange constants for the nn and nnn, and
K and K’ are biquadratic exchange constants for the
nn and nnn, respectively. D is the crystal-field interac-
tion or single-ion anisotropy constant and H is a time-
dependent external oscillating magnetic field: H(t) =
cos(wt), where Hy and w = 27V are the amplitude and
the angular frequency of the oscillating field, respec-
tively. The system is in contact with an isothermal heat
bath at absolute temperature 7.

The order parameters of the system are introduced
as follows: (1) The average submagnetizations ma =
(S)a and mp = (S)p, which are the excess of one ori-
entation over the other orientations, also called dipole
moments. (2) The sublattice quadrupole moments (ga
and gp), which are linear functions of the average
squared submagnetizations, i. e., ga = (5> —5/4)» and
gs = (§? —5/4)p, which are different from the defini-
tion ¢ = (S?) used by some researchers [18]. The first
definition ensures g = 0 at infinite temperature.

3. Derivation of the Mean-Field Dynamic
Equations

Since derivation of the mean-field dynamic equa-
tions is discussed in paper I extensively, we will
only give a brief summary here. The system evolves
according to the Glauber-type stochastic process at
a rate of 1/7 transitions per unit time. We define
p(S1,S2,...,SN;¢) as the probability that the system
has the S spin configuration, S1,S3,...,Sy, at time 7.
The time dependence of this probability function is as-
sumed to be governed by the master equation which
describes the interaction between the spins and the heat
bath. In the Glauber dynamics, the transition proba-
bilities of the individual spins are assumed to depend
on the momentary values of the neighbouring spins as

well as on the influence of the heat bath and W;(S; —
S!) is the probability per unit time that the i-th spin
changes from S; to S; while the other values remain
momentarily fixed. Therefore, if the spins on sublat-
tice B remain momentarily fixed, the master equation
for sublattice A can be written as

d
S PA(S1,8a, ... Snit) =
dr A( 1,92, N )

_Z < Z ‘/Vl'A(Si —>S;))PA(Sl,Sz,...,Si,...,SN;l)

i \glst

+Z< Z Wi, (S; — S;)Pa(S1,S2, ..., S}, ...,SN;t)) , (2)
i \sls!

where W;, (S; — S;) and W;, (S} — S;) are the probabili-

ties per unit time that the i-th spin changes from S; to S’

and S} to S;, respectively. Since the system is in contact

with a heat bath at absolute temperature 7', each spin

can change from S; to S} with the probability per unit

time

1 _exp(=BAEA(Si — S}))

T L exp(—BAEA(S; — S7))

where 8 = 1/kgT, kg is the Boltzmann factor, ¥ ¢

is the sum over the four possible values of Sf, +3/2,
+1/2, and

Wiy (Si - Si) =

» 3)

AEA(S; — S}) = —(S/—S)) (H+JZSj+J’ZSk)
nn

(5282 <D+KZ (52 —Z) +K'Y (s} —%)) @)

gives the change in the energy of the system when the
Si spin changes. The probabilities satisfy the detailed
balance condition. Since W;, (S; — S}) does not depend
on S;, we can write W;, (S; — S}) = W;, (S}). Hence the
master equation becomes

d
—PA(Sl,Sz,...,SN;l) =

dr

—Z(Z VViA(S;)>PA(S1,S2,...,S,‘,...,SN;Z‘)
i S;lsl_

+ZW,-A(S,-)< ) PA(SI,SZ,...,S;,...,SN;r)). )
i S;lsl_

Since the sum of the probabilities is normalized to one,
by multiplying both sides of (5) with S; for ma and
(S2 —5/4) for ga, and taking the average, we obtain
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d o\ o 3exp(By)sinh(3Bx/2) 4 exp(—By) sinh(Bx/2)

T Sia=—Siat <2exp(ﬁy) cosh(3px/2) + 2exp(—By)cosh(B/2) > ! ©
o o e exp(By) cosh(3Bx/2) — exp(— By) cosh(Bx/2)

T S AA= S 5/4>A+<exp(ﬁy)cosh(3ﬁx/2)+exp(—ﬁy)cosh(ﬂx/2)>’ @

where x = J Y S +J' Lonn Sk + H and y = D+ K ¥, (7 = 5/4) + K Lpn (57 — 5/4).
Using the mean-field approach, we obtain the following set of mean-field dynamical equations of motion for
the order parameters in the presence of a time-varying field:

Qi et 3exp(ay/T)sinh[3a; /20aT] + exp(—ay/T)sinh[a; /2aT)| 8)
dé a = A 2exp(az/T)cosh[3a; /2aT] +2exp(—az/T)cosh[a; /2aT]’

o4, _ . expa/T)cosh[3a1/2aT] — exp(~ar/T)coshlar/20T] ©)
dE EC exp(az/T)cosh[3a; /20T] + exp(—az/T)cosha; /2T]’

where a = J' /T (T=Jz,J =J7), k=K/T, ¥ =K' (K=Kz,K' =K'7),d=D/T, ay = mp +
ama + ahcos(E), & = wt, ay = oud + gk +qak’, ma = (S)a, mp = (S)B, ga = (S*> —5/4)a, qg = (S*> —5/4)3,
T=(BJ) ', h=Hy/J and Q = w.

Now, assuming that the spins on sublattice A remain momentarily fixed and the spins on the sublattice B
change, we obtain the mean-field dynamical equation for the submagnetization mg with the similar calculation
as

o d 3exp(b2/T)sinh[3b; /20T] + exp(—b,/T)sinh[b; /2aT] (10)
EmB - 2exp(b2/T)cosh[3b1 /20T + 2exp(—by/T) cosh[b /2aT]’

o d exp(by/T)cosh[3b,/20T| — exp(—by/T)cosh[b; /20.T] (1)
EqB ="t exp(by/T)cosh[3b1 /20T + exp(—by/T) cosh[b, /2aT]’

where by = mp +ompg +ahcos & and by = ad +gak+
gsk’. Hence, the set of mean-field dynamical equa-
tions for the order parameters is obtained. We fixed
J =—1.00 and £2 = 27. The solutions and discussion
of these equations are given in the next section.

4. Thermal Behaviours of Dynamic Order Para-
meters and Dynamic Phase Transition Points

In this section, we will first solve the set of dynamic
equations and present the time variation of the average
order parameters. Then we will obtain the average or-
der parameters in a period, which are also called the
dynamic order parameters, and investigate and present
the thermal behaviour of the dynamic order parame-
ters as functions of the reduced temperature, and as a
result, the DPT points will be calculated. For these pur-
poses, first we have to study the stationary solutions
of the set of dynamic equations, given in (8)—(11),
if the parameters T, k, k', d, a, o and h are varied.
The stationary solutions of (8)—(11) will be periodic

functions of & with period 27; that is, ma (€ +27) =
ma(&), mp(§ +27) = mp(8), ga (S +27) = qa(§)
and g (& + 27) = g(&). Moreover, they can be one
of three types according to whether they have or do not
have the properties

mp(E+m)=—mp(E), mp(E+7m)=—mp(§) (12a)

and

qa(6+7) =—qa(S), qB(§+m)=—ga(&). (12b)

The first type of solution, satisfying both (12a)
and (12b), is called a symmetric solution. It corre-
sponds to a disordered (d) solution. In this solution,
the average submagnetizations, namely ma and mg, al-
ways oscillate around zero value and are delayed with
respect to the external magnetic field. On the other
hand, the sublattice quadrupolar moments, namely ga
and ¢, are equal to each other (g4 = ¢gp) but oscillate
around a nonzero value for finite temperature.

The second type of solution, which does not sat-
isfy both (12a) and (12b), is called a nonsymmetric
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solution. my and mp do not follow the external mag-
netic field any more, but instead of oscillating around
zero value, they oscillate around a nonzero value,
namely +3/2 or +1/2.

The third type of solution, which satisfies (12a) but
does not satisfy (12b), corresponds to a ferroquadrupo-
lar or simply quadrupolar (fq) phase. ma and mg oscil-
late around zero and are delayed with respect to the
external magnetic field; ga and gg do not follow the
external magnetic field any more. A nonsymmetric so-
lution leads to the following three different phases or
solutions depending on the oscillating of the sublattice
order parameters:

1. The antiferromagnetic —3/2 phase (af3 /2):
ma =—mp ==+3/2and gy = g # 0.

2. The antiferromagnetic —1/2 phase (af} ):
ma =—mp ==+1/2and gy =g #0.

3. The ferroquadrupolar phase (fq):
ma = mp :0anqu:qB =—1.

These above facts are seen explicitly by solving (8) —
(11) numerically using the numerical method of the
Adams-Moulton predictor corrector method for a given
set of parameters and initial values; the solutions are
presented in Figure 1. From Fig. 1, one can see five
different solutions, namely the d, af;), afj,; and
fq phases or solutions and a coexistence solution,
namely the afj/; + afj/, in which af3 5, af}/; solu-
tions coexist. In Fig. 1a, only the symmetric solution
is obtained; hence, we have a disordered (d) solu-
tion. In Figs. 1b, ¢ and d only the nonsymmetric so-
lutions are found; therefore, we have the af; ), af
and fq solutions, respectively. These solutions do not
depend on the initial values. In Fig. le, we have also
the nonsymmetric solution for ma (&), mg(&), ga(&)
and gg (&), because ma (€) and mp (&) oscillate around
either +3/2 or +1/2and —3/2 or —1/2 at T =0 and
ga(€) = gs(€) oscillate around +1 or —1 at T = 0,
respectively. Hence, we have the solution coexistence
(af32 + afy ). In this case, the solution depends on
the initial values, as seen in Fig. le explicitly. Sim-
ilarly, we have the af},; + fq, af3); +fq, af3, +d,
af3, +afy , +1fq, fq+d, and af3 , 4 fq + d coexistence
solutions. We should also mention that these solutions
depend on the initial values. Since these solutions or
phases are similar to those in Fig. 1e, we do not present
these phases. In order to see the dynamic phase bound-
aries among these phases, we have to calculate DPT
points, and then we can present dynamic phase dia-
grams of the system. DPT points are obtained by inves-
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tigating the behaviour of the dynamic order parameters
as functions of the reduced temperature.

The dynamic order parameters, namely, the dynamic
sublattice magnetizations (M and Mp) and the dy-
namic sublattice quadrupole moments (Qa and QOg),
are defined as

2r 2r
My=s [ma(&)a6, My=o_ [ma()ag (130
0 0
and
| 2n | 2r
QAzgo/qA(@d&, 05 = EO/qB(éi)d&. (13b)

The behaviours of Ma, Mg and Qa, Op as functions
of the reduced temperature for several values of k, k/,
d, a and h are obtained by combining the numerical
methods of Adams-Moulton predictor corrector with
the Romberg integration. We give a few interesting ex-
amples to illustrate the calculation of the DPT points
(seen in Fig. 2). In these figures, thick lines repre-
sent M and Mg, and thin lines represent Qa and Qg.
TC (thick arrow) is the second-order phase transition
temperature from the af3/; phase to the d phase, Tt
(thin arrow) is from the af;, phase to the fq phase.
T; represents the first-order phase transition tempera-
ture for Ma, Mg, Qa and Qg. In addition to this, Tig is
the first-order phase transition temperatures for only
QOa and Qp. Figure 2a shows the reduced tempera-
ture dependence of the dynamic order parameters for
k=k=0.10,d = —0.06, oo = —0.75, and & = 0.50. In
this figure, Mo =3/2,Mg = —3/2and Qp = Qg = 1.0
at zero temperature; Mp and Qp = QOp decrease and
Mg increases to zero continuously as the reduced tem-
perature increases. Therefore, the second-order phase
transition occurs (7Tc = 2.09) and the phase transition
is from the af3 phase to the d phase (compare Fig. 2a
with Fig. 3a for h = 0.50). Figure 2b shows the be-
haviours of Mx, Mg and Qa, Qg as functions of the
reduced temperature for k = k' = 0.05, d = —0.75,
o =—0.05,and h =0.25. Mo = 1/2,Mg = —1/2 and
Oa = 0 = —1.0 at zero temperature and the system
exhibits a second-order phase transition and the transi-
tion is from the afy , phase to the fq phase (7cy = 0.23)
(compare Fig. 2b with Fig. 3g for h = 0.25). Figures 2c
and d illustrate the thermal variations of dynamic order
parameters for k = k' = 1.00, d = 0.025, a = —0.10,
and & = 0.125 for two different initial values; i.e.,
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Fig. 1. Time variations of the sublattice magnetizations (ma and mp) and sublattice quadrupole moments (g4 and gg): (a) a
disordered (d) phase for k = k' = 0.50, d = —0.25, @ = —1.00, h = 2.50, and T = 2.00; (b) an antiferromagnetic —3/2
(af3/2) phase for k=k" = 0.10, d = —0.06, o« = —0.75, h = 0.18, and T = 1.03; (c) an antiferromagnetic —1/2 (afl/z) phase
for k =k =0.25, d = —0.56, o« = —0.10, h = 0.25, and T = 0.125; (d) a ferroquadrupolar (fq) phase for k = ¥’ = 1.50,
d =0.025, ¢« = —0.10, h = 0.025, and T = 2.25; (e) a coexistence region (af3/2 +af1/2) for k =k = 0.50, d = —0.25,
a=—1.00, 2=0.50,and T = 0.25.
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Fig. 2. The reduced temperature dependences of the dynamic sublattice magnetizations M and My (thick solid lines) and the
dynamic sublattice quadrupole moments Qa and Qg (thin solid lines). T¢ (thick arrow) is the second-order phase transition
temperature from the af; ;, phase to the d phase; T¢s (thin arrow) is from the afy , phase to the fq phase. 7; represents the
first-order phase transition temperature for M, Mg, Oa and Qg. Tig is the first-order phase transition temperature for only
Oa and Qg. (a) Second-order phase transition from the af3 /, phase to the d phase for k = kK =0.10,d = —0.06, o = —0.75,
and & = 0.50; 2.09 is found to be Tc. (b) Second-order phase transition from the afy /, phase to the fq phase for k = k' =0.05,
d=—-0.75, o« = —0.05, and h = 0.25; 0.23 is found to be T¢. (c) First-order phase transition from the af3 ;, phase to the d
phase for k =k’ = 1.00, d = 0.025, = —0.10, and & = 0.125; 1.89 is found to be T;. (d) Two successive phase transitions:
the first one is a second-order phase transition from the afj /; phase to the fq phase and the second one is a first-order phase
transition from the fq phase to the d phase for k = k' = 1.00, d = 0.025, @ = —0.10, and 2 = 0.125; 0.27 and 1.85 are found to
be Tcr and Tig, respectively. (e) First-order phase transition from the af3 /, phase to the fq phase for k = kK =0.50,d = —0.25,
a = —1.20, and h = 0.75; 2.34 is found to be T; (f) Three successive phase transitions: the first one is a second-order phase
transition from the af /, phase to the fq phase, the second one is a first-order phase transition from the fq phase to the af3
phase, and the third one is also a first-order phase transition from the af; ;, phase to the fq phase for k = kK =0.50,d = —0.25,
o = —1.20, and 7 = 0.75; 0.41, 0.67, and 2.31 are found to be Tcr, Typ, and Ti, respectively. (g) Four successive phase
transitions: the first one is a first-order phase transition from the fq phase to the af; /, phase, the second one is a second-order

phase transition from the afy /, phase to the fq phase, the third one is a first-order phase transition from the fq phase to the
af3/, phase and the fourth one is also a first-order phase transition from the af; ;, phase to the fq phase for k = k' = 0.50,
d=-0.25, o =—1.20, and h =0.75; 0.14, 0.41, 0.67, and 2.31 are found T;, Tc', Tip, and T, respectively.
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Fig. 3. Phase diagrams of the kinetic metamagnetic spin —3/2 BEG model in the (T', 1) plane exhibiting one dynamic tricritical
point. The disordered (d), antiferromagnetic —3/2 (af; /2), antiferromagnetic —1/2 (af; /2), ferroquadrupolar (fq), and six
different regions of coexisting phases, namely, the af3 ; +af} 5, af3 , +afy ;, +1q, af; ;, +1q, af3 , +d, af , +fq and fq+d
regions, are found. Dashed and solid lines represent the first- and second-order phase transitions, respectively, the dynamic
tricritical point is indicated with filled circles, and B denotes the dynamic double-critical end point. (a) k = kK’ = 0.10, d =
—0.06, oo = —0.75; (b) k =k = 0.10, d = —0.06, o = —0.15; (c) k = k' = 0.50, d = —0.25, a = —2.20; (d) k = k¥’ = 0.50,
d=-0.25 a=-1.50;(e) k=k =0.50,d = —0.25, a« = —0.30; (f) k=k' =0.50, d = —0.25, o« = —0.10; (g) k=K' = 0.05,
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Ma =3/2, M =0.0, Qs = 1.0, and Qg = —1.25 for
Fig. 2c and Ma = 1/2, Mg = 0.0, Qs = —1.0, and
QOp = —1.25 for Figure 2d. Figure 2c shows that M,
Mg and Qa = Qp undergo a first-order phase transi-

tion, because M and Qp = Qg decrease and Mg in-
creases to zero discontinuously as the temperature in-
creases. The system undergoes the first-order phase
transition that is from the af3; phase to the d phase
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Fig. 5. Phase diagrams of the kinetic metamagnetic spin —3/2 BEG model in the (7, h) plane exhibiting three dynamic tri-
critical points. The disordered (d), antiferromagnetic —3/2 (af; /2), ferroquadrupolar (fq) and six different regions coexisting
phases, namely, the af3 , +afy , af3 5 +afy , +1q, af3 ), +1q, af3 ) +d, af3 ), +fq +d and fq+d regions, are found. Dashed
and solid lines represent the first- and second-order phase transitions, respectively; the dynamic tricritical points are indicated
with filled circles. (a) k = k' = 0.50, d = 0.25, & = —0.25; (b) k = k' = 0.50, d = —0.25, & = —0.30; (c) k = k¥ = 1.00,
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(Tt = 1.89). In Fig. 2d, the system undergoes two suc-
cessive phase transitions: the first one is a second-order
phase transition from the af} , phase to the fq phase
(Tr = 0.27), and the second one is a first-order phase
transition from the fq phase to d phase (T = 1.85)
for only Qa and Qg. Figures 2c and d imply that the
system exhibits the af;/; + afy /, region of coexisting
phases for very low values of the temperature, then the
af3/; +fq phase, then the afj/; 4+ d phase and finally
the d phase for very high values of the temperature
(compare Figs. 2c and d, with Fig. 5c for & = 0.125).
Figures 2e—g show the behaviour of Ma, Mg, Oa
and QOp as functions of the reduced temperature for
k=K =0.50,d = —-0.25, o« = —1.20, and h = 0.75

for three different initial values, i.e., the initial values
Mp = 1.5, Mg = 0.0, Qs = 1.0, and Qg = —1.25 for
Fig. 2e, and My = 0.5, Mg = 0.0, Qp = —1.0, and
Op = —1.25 for Fig. 2f, and M = 0.0, Mg = 0.0,
Oa = —1.25, and Qg = —1.25 for Figure 2g. The be-
haviour in Fig. 2e is similar to that in Fig. 2c, hence,
the system undergoes the first-order phase transition
from the af;/, phase to the fq phase (7; = 2.34). In
Fig. 2f, the system undergoes three successive phase
transitions: The first one is a second-order phase tran-
sition from the af; ;, phase to the fq phase (Ty = 0.41),
the second one is a first-order phase transition from
the fq phase to the af3; phase (Tip = 0.67), and the
third one is also a first-order phase transition from the
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Fig. 6. Phase diagrams of the kinetic metamagnetic spin —3/2 BEG model in the (T,h) plane exhibiting four dynamic
tricritical points. The antiferromagnetic —3/2 (af3 /2), the ferroquadrupolar (fq) and six different regions of coexisting phases,
namely, the af; , +afy ), af3 ), +afy » +1q, af; » +1q, af3 ), +d, af; ), +fq+d and fq + d regions, are found. Dashed and
solid lines represent the first- and second-order phase transitions, respectively; the dynamic tricritical points are indicated
with filled circles. (a) k =k = 0.50, d = —0.25, a = —1.20; (b) k =k = 0.50, d = —0.25, @ = —1.25.

af3; phase to the fq phase (7; = 2.31). In Fig. 2g, the
system undergoes four successive phase transitions:
the first one is a first-order phase transition from the
fq phase to the af;, phase (T; = 0.14), the second
one is a second-order phase transition from the afy
phase to the fq phase (T = 0.41), the third one is
a first-order phase transition from the fq phase to the

af3 /> phase (Typ = 0.67), and the fourth one is also
a first-order phase transition from the af3, phase to
the fq phase (7; = 2.31). These three figures imply
that the system exhibits the af3 ; + af; , + fq coexis-
tence region or phase for very low temperatures, then
the afy, + af} > phase, the af3/; + fq phase, the af; ),
phase, the af3 ; + fq phase, and finally the fq phase for
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«— Fig. 7. Phase diagrams of the kinetic metamagnetic spin —3/2 BEG model in the (k,T) plane for several values of o, d
and h. The disordered (d), antiferromagnetic —3/2 (af; /2), antiferromagnetic —1 /2 (af) /2), ferroquadrupolar (fq) and seven
different regions of coexisting phases, namely the af; ;, +afy 5, afy j, +1q, af3 , +1q, af3 , +d, af; , +afy ;, +1q, fq+d and
af3/; 4+ fq + d regions, are found. Dashed and solid lines represent the first- and second-order phase transitions, respectively;
the dynamic tricritical points are indicated with filled circles and the dynamic double-critical end point is represented by
B. (a) ¢ = —1.20, d = —0.25, h = 0.75; (b) a = —0.75, d = —0.06, h = 0.50; (c) o = —0.10, d = 0.025, h = 0.125;
(d) a=-0.10,d =0.025, h =1.00; (e) @ = —0.15, d = —0.06, h = 0.75; (f) o« = —0.10,d = —0.25, h = 0.75; (g) a = —0.10,
d=0.25h=2.65;(h) a=—-0.05,d =—-0.75, h=0.45; (i) o« = —0.05, d = —0.75, h = 0.1875.

very high temperatures. These facts are seen clearly in
the phase diagram of Fig. 6a for h = 0.75.

5. Phase Diagrams

Since we have obtained DPT points in Section 4, we
can now present the phase diagrams of the system. The
calculated phase diagrams in the (T',/) plane are pre-
sented in Figs. 3 —6 for various values of k, k', d, and .
In these phase diagrams, the solid and dashed lines
represent the second- and the first-order phase tran-
sition lines, respectively, the dynamic tricritical point
is denoted by a filled circle and B represents the dy-
namic double-critical end point. As seen from the fig-
ures, one, two, three or four dynamic tricritical points
occur depending on the interaction parameters.

Eight, two, four and two main different topolog-
ical types of dynamic phase diagrams are found in
Figs. 3, 4, 5 and 6, respectively. If one can investi-
gate these phase diagrams, one can observe follow-
ing interesting and main results: (1) The phase dia-
grams exhibit one, two, three and four dynamic tri-
critical points, and besides a disordered (d), three or-
dered phases (af3 )5, afj, and fq) and seven regions
of coexisting or mixed phases depending on the inter-
action parameters. (2) The dynamic phase boundaries
are the second-order transition lines between the af3
and d phases, between the af3 , +afy 5 and af3 ), +1fq
phases, and between the af; /, and fq phases. The phase
boundaries among all other phases are first-order tran-
sition lines. (3) The dynamic double-critical end point
(B) separates one phase region from the other phase
region, as seen Figs. 3f and h. Moreover, we observe
a phase diagram in Fig. 3a, which is very similar
to earlier studies of the kinetic spin —3/2 Ising sys-
tems [25-27], except that the ferromagnetic —3/2
(f3/2) phase exists instead of the af3; phase, also to
the kinetic spin —1/2 Ising model [28], kinetics of a
mixed spin —1/2 and spin —1 Ising model [29] and
kinetic spin —1 Ising systems [29—31], but the ferro-
magnetic (f) phase occurs instead of the af;/, phase

in [30-32]. Moreover, we also find the similar topol-
ogy of phase diagram to Figs. 3b and c in [25-27],
except that the f3 5, f32 +1q, f32 +d and f3,, + 1},
phases occur instead of the af3 ), af; , +fq, af3» +d
and afy , +afy ), phases, respectively. We should also
mention that Figs. 3d—h and Figs. 4—6 are the new
phase diagrams obtained by this model.

We have investigated the influence of the reduced
biquadratic exchange parameter (k) and present the
phase diagrams in the (k,T) plane in Figure 7. In these
phase diagrams, the solid and dashed lines represent
the second- and first order phase transitions, respec-
tively. The dynamic tricritical point is indicated with a
solid circle and the dynamic double-critical end point
is represented by B. We obtain nine different phase dia-
gram topologies in which six of them cannot be readily
obtained from the phase diagrams in the (7',/) plane
and three of them can be readily obtained from the
phase diagrams in the (7', 1) plane. The following main
results are observed from Fig. 7:

(1) One and two dynamic tricritical points are found
in Figs. 7d —f and 7a—c, respectively. Figures 7g—1 do
not exhibit any tricritical point. (2) Figures 7c and e
contain the dynamic double critical end point. (3) The
dynamic phase boundaries are the second-order tran-
sition lines between the af3, and d phases, between
the af3 ), + afy , and af3/; + fq phases, and between
the afy /, and fq phases. The phase boundaries among
all other phases are first-order transition lines. (4) The
phase boundary between the af3/, and d phases is a
first-order line for high values of k, as seen in Fig-
ure 7e.

6. Summary and Conclusions

We have analyzed, within a mean-field approach,
the stationary states of the kinetic metamagnetic
spin —3/2 BEG model under a time-dependent oscil-
lating external magnetic field. We used the Glauber-
type stochastic dynamics to describe the time evolu-
tion of the system. We have studied the behaviour of
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the time dependences of the average order parame-
ters, namely the sublattice magnetizations or dipole
moments and the sublattice quadrupole moments. We
also investigated the dynamic order parameters; as a re-
sult the DPT points were calculated. We presented the
phase diagrams in the (7',/) plane. We found that the
behaviour of the system strongly depends on the values
of k, k¥, d and «, and sixteen different phase diagram
topologies were found. The phase diagrams exhibited
besides the d, af3 5, af; , fq phases, seven coexistence
regions, namely af3 ), + afy 5, af; ), +1fq, af3 ), +fq,
af3; +d, afy ), +afy ), +fq, fq+d and af3 ), + fq +d,
depending on the values k,k’, d and o. The dynamic
phase boundaries among these phases were first-order
lines for most cases and second-order lines for a few
cases. The system also exhibited one, two, three or
four dynamic tricritical points and a dynamic double-
critical end point (B) depending on k, K/, d and o.. We
have investigated the influence of the biquadratic ex-
change constant and have obtained nine different phase
diagram topologies in the (k,T) plane in which six of
them could not be readily obtained from the phase di-
agrams in the (7', /) plane and three of them could be
readily obtained from the phase diagrams in the (T, h)
plane.

We should also mention that the existence of the dy-
namical tricritical point (TCP) is restricted to mean-
field studies only [33-36]. The fluctuation destroys
the existence of the dynamic TCP. For example,
Acharyya [35] has done a work to establish the appear-
ance of the dynamic TCP accompanied by stochas-
tic resonance, but Korniss et al. [36] showed that this
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may be a finite size effect. Recently, Acharyya and
Acharyya [37] found that the dynamic TCP may ap-
pear in mean-field studies. Hence, all these studies con-
cluded that the dynamic TCP is observed only in mean-
field studies.

It should be also mentioned that since the mean-field
equations correspond to extrema in the free energy,
(8)—(11) might not correspond to a global minimum
of the free energy. Therefore, there is a strong possibil-
ity that at least some of the first-order transitions seen
in the phase diagrams are very likely artifacts of the ap-
proximation due to its limitations, such as the correla-
tions of spin fluctuations have not be been considered.
However, this mean-field dynamic study suggests that
the metamagnetic spin —3/2 BEG model gives more
interesting dynamic phase diagrams; hence, a further
with more accurate techniques such as dynamic Monte
Carlo simulations or the renormalization group calcu-
lations would be worthwhile.

Finally, we should emphasize that the present study
is primarily of theoretical interest. We hope that this
study is able to stimulate theoretical physicists to con-
tinue to get more theoretical results about the meta-
magnetic systems. We also hope it may give some light
for experimental works.
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