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We consider a coupled system of nonlinear viscoelastic equations with linear damping and source
terms. Under suitable conditions of the initial data and the relaxation functions, we prove a finite-
time blow-up result with vanishing initial energy by using the modified energy method and a crucial
lemma on differential inequality.
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1. Introduction

We consider the Cauchy problem for the follow-
ing coupled system of nonlinear viscoelastic equations
with linear damping and source terms:

utt −∆u +
∫ t

0
g(t − s)∆u(x,s)ds+ ut = f1(u,v),

(x, t) ∈ R
n × (0,∞),

vtt −∆v +
∫ t

0
h(t − s)∆v(x,s)ds+ vt = f2(u,v),

(x, t) ∈ R
n × (0,∞),

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ R
n,

v(x,0) = v0(x), vt(x,0) = v1(x), x ∈ R
n,

(1)

where g, h, u0, u1, v0, v1 are functions to be specified
later. This type of problems arises naturally in the the-
ory of viscoelasticity and describes the interaction of
two scalar fields (see [1,2]). The integral terms express
the fact that the stress at any instant depends not only
on the present value but on the entire past history of
strains the material has undergone.

The motivation of our work is due to the initial
boundary problem of the scalar equation

utt −∆u +
∫ t

0
g(t − τ)∆u(τ)dτ + ut|ut |m−2 = u|u|p−2,

(x, t) ∈ Ω × (0,∞),
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u(x, t) = 0, x ∈ ∂Ω , t ≥ 0,

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ Ω , (2)

where Ω is a bounded domain of R
n (n ≥ 1) with a

smooth boundary ∂Ω , p > 2, m ≥ 1, and g : R
+ → R

+

is a positive nonincreasing function. In [3], Messaoudi
showed, under suitable conditions of g, that solutions
with negative initial energy blow up in finite time, if
p > m, and continue to exist, if m ≥ p. This result has
been later pushed by the same author [4] to certain so-
lutions with positive initial energy. We would like to
mention that [1] was one of the first papers consider-
ing the viscoelastic equation

|ut |ρ utt −∆u +
∫ t

0
g(t − τ)∆u(τ)dτ −∆ut = 0

with Dirichlet boundary conditions, which showed uni-
form decay rates of the energy subject to a strong dis-
sipative term. And [5] is the most recent paper on this
subject taking into account the contrast of frictional
versus viscoelastic effects, in which the authors es-
tablished general decay rates for the viscoelastic wave
equation strongly weakening the usual assumptions on
the relaxation function. In the absence of the viscoelas-
tic term (g = 0), (2) has also been extensively studied
and many results concerning the global existence and
nonexistence have been proved (see [6 – 13] and the
references therein).

In all above treatments the underlying domain is
assumed to be bounded. The boundedness of the do-
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main is essential because of the usage of the bounded-
ness of the injection Lp(Ω) ⊂ Lq(Ω), when 1 ≤ q ≤ p
(see [14, 15]). For problem (2) in R

n, we also men-
tion the work of Levine, Park and Serrin [16], Mes-
saoudi [17], and Zhou [18]. Recently, Kafini and Mes-
saoudi [19] studied the coupled system (1) but without
damping terms. By defining the functional

F(t)=
1
2

∫
Rn

[|u(x,t)|2+ |v(x,t)|2]dx+
1
2

β (t +t0)2 (3)

and using the classical concavity method, they proved
that the solution blows up in finite time if the ini-
tial energy is negative. More recently, the same au-
thors [20] considered the following Cauchy problem
with a damping term:

utt −∆u +
∫ t

0
g(t − s)∆u(x,s)ds+ ut = u|u|p−2,

(x, t) ∈ R
n × (0,∞),

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ R
n.

(4)

Applying suitable conditions to the initial data and the
condition∫ +∞

0
g(s)ds <

p−2
p−3/2

(5)

to the relaxation function, they proved a blow-up result
with vanishing initial energy.

Motivated by the ideas of [3, 19, 20], we intend to
extend the result of [19, 20] to our problem (1). We
shall prove a finite-time blow-up result for problem (1)
with vanishing initial energy. We note that the method
used in [19] cannot be applied to our problem directly
since the damping terms are contained. To achieve our
goal we will use the functional (14) below [instead
of (3)] and modify the method of [20] [see (19) – (21)
below] so that the blow-up result for a single equation
is extended to the coupled system (1). Moreover, our
assumption for the relaxation functions [see (10) be-
low] is slightly weaker than that of [20]. The lack of the
injection Lp(Rn) ⊂ Lq(Rn) shall be compensated by
the usage of the compact support method. The results
obtained in the present paper might find some potential
applications in the theory of nonlinear viscoelasticity.

The manuscript is organized as follows. In Section 2
we make some assumptions for the relaxation func-
tions g, h and the coupled terms. The local existence
of solutions and a crucial lemma are also stated. Our
main result is given and proved in Section 3.

2. Preliminaries

In this section we present some material needed in
the proof of our main result. First, we make the follow-
ing assumptions:

(G1) g,h : R+ → R+ are nonincreasing differen-
tiable functions satisfying

1−
∫ ∞

0
g(s)ds = l > 0, t ≥ 0,

1−
∫ ∞

0
h(s)ds = k > 0, t ≥ 0.

(G2) There exists a function I(u,v) ≥ 0 such that

∂I
∂u

= f1(u,v),
∂I
∂v

= f2(u,v).

(G3) There exist positive constants B and ρ such that
2 < ρ < 2 + 2/n and∫

Rn
[u f1(u,v)+ v f2(u,v)]dx ≥ ρ

∫
Rn

I(u,v)dx

≥ B
∫

Rn
(|u|ρ + |v|ρ)dx.

(G4) There exists a constant d > 0 such that

| f1(ξ ,ς)| ≤ d(|ξ |γ1 + |ς |γ2), ∀(ξ ,ς) ∈ R
2,

| f2(ξ ,ς)| ≤ d(|ξ |γ3 + |ς |γ4), ∀(ξ ,ς) ∈ R
2,

where

γi ≥ 1, (n−2)γi ≤ n, i = 1,2,3,4.

Remark. (G1) is necessary to guarantee the hyper-
bolicity of system (1). Condition (G4) is necessary for
the existence of a local solution to (1). As an example
of functions satisfying (G2) – (G4), we have

I(u,v) =
1
ρ

(|uv|ρ + |u|ρ + |v|ρ),

(n−2)ρ ≤ 2(n−1).

We introduce the “modified” energy functional, as
in [19],

E(t) :=
1
2
‖ut‖2

2 +
1
2
‖vt‖2

2

+
1
2

(
1−

∫ t

0
g(s)ds

)
‖ u‖2

2

+
1
2

(
1−

∫ t

0
h(s)ds

)
‖ v‖2

2 +
1
2
(g ◦ u)

+
1
2
(h ◦ v)−

∫
Rn

I(u,v)dx,

(6)
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where

(g ◦ u)(t) =
∫ t

0
g(t − τ)‖ u(t)− u(τ)‖2

2 dτ,

(h ◦ v)(t) =
∫ t

0
h(t − τ)‖ v(t)− v(τ)‖2

2 dτ.

(7)

We now state, without a proof, a local existence re-
sult, which can be established by combining the argu-
ments of [1, 7, 14].

Theorem 1. Assume that (G1) and (G4) hold. Then
for the initial data (u0,v0) ∈ [H1(Rn)]2, (u1,v1) ∈
[L2(Rn)]2, with compact support, problem (1) has a
unique local solution

(u,v) ∈ [C([0,T ); H1(Rn)]2,

(ut ,vt) ∈ [C([0,T ); L2(Rn)∩L2([0,T )×R
n)]2

for T small enough.
In order to prove our main result, we need the fol-

lowing crucial lemma on differential inequality.

Lemma (see [21, Proposition 3.1]). Suppose that
G(t) is a twice continuously differentiable function sat-
isfying

G′′(t)+G′(t) ≥C0(t +L)β G1+α(t), t > 0, (8)

G(0) > 0, G′(0) ≥ 0,

where C0, L > 0, −1 < β ≤ 0, α > 0 are constants.
Then G(t) blows up in finite time. Moreover, the blow-
up time can be estimated as

T0 =

(
2G−α/2(0)

δα
+ Lβ+1

)1/(β+1)

−L, (9)

where δ > 0 is a small constant such that δ <
G′(0)/[Lβ G1+α/2(0)].

3. Blow Up of Solution with Vanishing Initial
Energy

In this section we state and prove our main result.

Theorem 2. Assume that (G1)–(G4) hold and that

max
{∫ +∞

0
g(s)ds,

∫ +∞

0
h(s)ds

}
<

ρ −2
ρ −2 + 1/ρ

. (10)

Then for the initial data (u0,v0),(u1,v1) ∈ H1(Rn)×
L2(Rn), with compact support, satisfying

E(0) =
1
2
‖u1‖2

2 +
1
2
‖ u0‖2

2 +
1
2
‖v1‖2

2

+
1
2
‖ v0‖2

2 −
∫

Rn
I(u0,v0)dx ≤ 0

(11)

and ∫
Rn

(u0u1 + v0v1)dx ≥ 0,

the corresponding solution of (1) blows up in finite
time.

Proof. Multiplying the equations in (1) by ut and vt ,
respectively, and integrating over R

n, we obtain [3]

E ′(t) = −(‖ut‖2
2 +‖vt‖2

2)+
1
2
(g′ ◦ u)

+
1
2
(h′ ◦ v)− 1

2
g(s)‖ u‖2

2

− 1
2

h(s)‖ v‖2
2 ≤ 0.

(12)

Hence,

E(t) ≤ E(0) < 0. (13)

We then define

G(t) =
1
2

∫
Rn

[|u(x, t)|2 + |v(x, t)|2]dx. (14)

By differentiating G twice we get

G′(t) =
∫

Rn
(utu + vtv)dx, (15)

G′′(t) =
∫

Rn
(uttu+vttv)dx+

∫
Rn

(|ut |2 + |vt |2)dx. (16)

To estimate the term
∫
Rn(uttu+vtt v)dx in (16), we mul-

tiply the equations in (1) by u and v, respectively, and
integrate them by parts over R

n to get∫
Rn

(uutt + vvtt)dx =

−
∫

Rn
(| u|2 + | v|2)dx

+
∫

Rn
[u f1(u,v)+ v f2(u,v)]dx

+
∫ t

0
g(t − s)

∫
Rn

u(x, t). u(x,s)dxds

+
∫ t

0
h(t − s)

∫
Rn

v(x, t). v(x,s)dxds

−
∫

Rn
(utu + vtv)dx.
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But

∫ t

0
g(t − s)

∫
Rn

u(x,t). u(x,s)dxds =
∫ t

0
g(t − s)

∫
Rn

u(x,t).[ u(x,s)− u(x,t)]dxds

+
(∫ t

0
g(s)ds

)∫
Rn

| u(x,t)|2 dx.

Using Young’s inequality and (G3) we arrive at

∫
Rn

(uutt + vvtt)dx ≥[
−1− δ +

∫ t

0
g(s)ds

]
‖ u‖2

2

+ρ
∫

Rn
I(u,v)dx− 1

4δ

(∫ t

0
g(s)ds

)
(g ◦ u)

+
[
−1− δ +

∫ t

0
h(s)ds

]
‖ v‖2

2

− 1
4δ

(∫ t

0
h(s)ds

)
(h ◦ v)−

∫
Rn

(utu + vtv)dx

(17)

for all δ > 0. By combining (15) – (17), we get

G′′(t)+ G′(t) ≥
[
−1− δ +

∫ t

0
g(s)ds

]
‖ u‖2

2

− 1
4δ

(∫ t

0
g(s)ds

)
(g ◦ u)

+
[
−1− δ +

∫ t

0
h(s)ds

]
‖ v‖2

2

− 1
4δ

(∫ t

0
h(s)ds

)
(h ◦ v)

+ρ
∫

Rn
I(u,v)dx +

∫
Rn

(|ut |2 + |vt|2)dx.

(18)

By using (6), that is

(
−1 +

∫ t

0
g(s)ds

)
‖ u‖2

2

+
(
−1 +

∫ t

0
h(s)ds

)
‖ v‖2

2 =

−2E(t)+ (‖ut‖2
2 +‖vt‖2

2)+ (g ◦ u)

+(h ◦ v)−2
∫

Rn
I(u,v)dx,

(18) becomes

G′′(t)+ G′(t) ≥−2E(t)− δ‖ u‖2
2

+
[

1− 1
4δ

(∫ t

0
g(s)ds

)]
(g ◦ u)

−δ‖ v‖2
2+
[

1− 1
4δ

(∫ t

0
h(s)ds

)]
(h ◦ v)

+(1− γ)(ρ −2)
∫

Rn
I(u,v)dx

+γ(ρ −2)
∫

Rn
I(u,v)dx + 2

∫
Rn

(|ut |2 + |vt |2)dx

(19)

for all 0 < γ < 1. Now, we exploit (6) to substitute
(1− γ)(ρ −2)

∫
Rn I(u,v)dx, thus (19) takes the form

G′′(t)+ G′(t) ≥[
(1− γ)(ρ −2)

2

(
1−

∫ t

0
g(s)ds

)
− δ
]
‖ u‖2

2

+
[
(1− γ)(ρ −2)

2

(
1−

∫ t

0
h(s)ds

)
− δ
]
‖ v‖2

2

+
[

1 +
(1− γ)(ρ −2)

2
− 1

4δ

(∫ t

0
g(s)ds

)]
(g ◦ u)

−(2 +(1− γ)(ρ−2))E(t)

+
[

1 +
(1− γ)(ρ −2)

2
− 1

4δ

(∫ t

0
h(s)ds

)]
(h ◦ v)

+γ(ρ −2)
∫

Rn
I(u,v)dx

+
(

2 +
(1− γ)(ρ −2)

2

)∫
Rn

(|ut |2 + |vt |2)dx. (20)

Next, we choose δ > 0 so that

(1− γ)(ρ −2)
2

(
1−

∫ ∞

0
g(s)ds

)
− δ ≥ 0,

1 +
(1− γ)(ρ −2)

2
− 1

4δ

(∫ ∞

0
g(s)ds

)
≥ 0,

and

(1− γ)(ρ −2)
2

(
1−

∫ ∞

0
h(s)ds

)
− δ ≥ 0,

1 +
(1− γ)(ρ −2)

2
− 1

4δ

(∫ ∞

0
h(s)ds

)
≥ 0.

This is, of course, possible by (10). We then conclude,
from (20), that

G′′(t)+G′(t)≥ γ(ρ−2)
∫

Rn
I(u,v)dx, ∀t ≥ 0. (21)
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Now, we use the finite speed of propagation for sys-
tem (1) and Hölder’s inequality to obtain

∫
Rn

|u|2 dx≤
(∫

Rn
|u|ρ dx

) 2
ρ
(∫

B(t+L)
1dx
) ρ−2

ρ
(22)

and

∫
Rn

|v|2 dx≤
(∫

Rn
|v|ρ dx

) 2
ρ
(∫

B(t+L)
1dx
) ρ−2

ρ
, (23)

where the constant L > 0 is such that

supp{u0(x),u1(x),v0(x),v1(x)} ⊂ {|x| ≤ L}

and B(t + L) is the ball, with radius t + L, centered at
the origin. If we call Wn the volume of the unit sphere
in R

n, then∫
Rn

(|u|ρ + |v|ρ)dx ≥
(∫

Rn
|u|2 dx

) ρ
2
(Wn(t + L)n)−

ρ−2
2

+
(∫

Rn
|v|2 dx

) ρ
2
(Wn(t + L)n)−

ρ−2
2

= W
− ρ−2

2
n (t + L)−

n(ρ−2)
2

·
[(∫

Rn
|u|2 dx

) ρ
2
+
(∫

Rn
|v|2 dx

) ρ
2
]

≥ 2−
ρ−2

2 W
− ρ−2

2
n (t + L)−

n(ρ−2)
2
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·
(∫

Rn
|u|2dx +

∫
Rn

|v|2 dx
) ρ

2

= 2W
− ρ−2

2
n (t + L)−

n(ρ−2)
2 G

ρ
2 (t) (24)

by using the inequality

(a+b)p ≤ 2p−1(ap +bp), for a,b > 0, p > 1.

Consequently, by (G3), we have

G′′(t)+ G′(t) ≥
2γ

ρ −2
ρ

BW
− ρ−2

2
n (t + L)−

n(ρ−2)
2 G

ρ
2 (t).

(25)

It is easy to verify that the requirements of Lemma are
satisfied if

C0 = 2γ
ρ −2

ρ
BW

− ρ−2
2

n > 0,

−1 < β = −n(ρ −2)
2

< 0,

α =
ρ −2

2
> 0.

Therefore G(t) blows up in finite time.
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