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We consider equations in the modified Korteweg-de Vries (mKdV) hierarchy and make use of the
Miura transformation to construct expressions for their Lax pair. We derive a Lagrangian-based ap-
proach to study the bi-Hamiltonian structure of the mKdV equations. We also show that the complex
modified KdV (cmKdV) equation follows from the action principle to have a Lagrangian representa-
tion. This representation not only provides a basis to write the cmKdV equation in the canonical form
endowed with an appropriate Poisson structure but also help to construct a semianalytical solution of
it. The solution obtained by us may serve as a useful guide for purely numerical routines which are
currently being used to solve the cmKdV equation.
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1. Introduction

Nearly forty years ago Lax [1] showed that the
Korteweg-de Vries (KdV) initial value problem for u =
u(x, t) given by

ut = u3x −6uux (1)

with

u(x,0) = V(x) (2)

is one equation of the infinite family that leaves the
eigenvalue of the Schrödinger equation with the poten-
tial V(x) invariant in time. The subscripts of u in (1)
denote differentiation with respect to the associated in-
dependent variables. The family of equations discov-
ered by Lax often known by the name KdV hierarchy
and is generated by making use of the recursion oper-
ator [2]

Λ = ∂2
x −4u−2ux∂−1

x , ∂x =
∂
∂x

(3)

in the differential relation

ut = Λ nux, n = 0,1,2,3, . . . . (4)
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The KdV equation (1) is recognized as the solvabil-
ity condition for the system

Lψ = λ ψ , (5a)

and

∂tψ = Aψ , ∂t =
∂
∂t

(5b)

with

L = −∂2
x + u (6a)

is the so-called Schrödinger operator. Here A is a third-
order linear operator written as

A = 4∂3
x −3u∂x −3∂xu. (6b)

The existence of the solution ψ = ψ(λ ,x, t) for every
constant λ is equivalent to

∂tL = AL−LA = [A,L]. (7)

The result in (7) is called the Lax equation and the op-
erators L and A are called Lax pair [1]. The Lax pair
representation holds good for all equations in the KdV
hierarchy. In the context of Lax’s method it is often
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said, that L defines the original spectral problem while
A represents an auxiliary spectral problem. As one goes
along the hierarchy, L remains unchanged but the dif-
ferential operator associated with the auxiliary spectral
problems changes according to

An = (4)n∂2n+1
x +

n

∑
j=1

{a j∂2 j−1
x + ∂2 j−1

x a j},
n = 0,1,2,3, . . . .

(8)

The operator A0 stands for ∂x and A1 for A in (6b).
It is not always easy to obtain results for other An
which generate higher-order KdV equations. The co-
efficient a j depends on the solution u and derivatives

un(= ∂n
u

∂xn
). From (8) it is clear that as j varies, the di-

mension of a j changes. Thus a j should be chosen as a
linear combination of power and products of u and un
such that the terms in the curly brackets have the right
dimension of ∂2n+1

x . The constructed expression for An
will then generate the KdV hierarchy when used in the
Lax equation [3]. On the other hand, one can postulate
that for an evolution equation of the form ut = K[u] the
terms in the Fréchet derivative of K[u] contribute ad-
ditively with unequal weights to form the operator An
such that L and An via (7) reproduce the equations in
the hierarchy [4]. Of course, there should not be any
inconsistency in determining the values of the weight
factors.

Zakharov and Faddeev [5] developed the Hamilto-
nian approach to the integrability of nonlinear evolu-
tion equations in one spatial and one temporal (1+1)-
dimensions and, in particular, Gardner [6] interpreted
the KdV equation as a completely integrable Hamil-
tonian system with ∂x as the relevant Hamiltonian op-
erator. A significant development in the Hamiltonian
theory is due to Magri [7], who realized that inte-
grable Hamiltonian systems have an additional struc-
ture. They are bi-Hamiltonian, i. e., they are Hamilto-
nian with respect to two different compatible Hamilto-
nian operators, ∂x and (∂3

x −4u∂x −2ux), such that

ut = ∂x

(
δHn

δu

)

= (∂3
x −4u∂x −2ux)

(
δHn−1

δu

)
,

n = 1,2,3, . . . .

(9)

Here Hn =
∫ Hndx, where Hn are the conserved densi-

ties for the equations in the KdV hierarchy. These con-
served densities generate flows which commute with

the KdV flow and as such give rise to an appropriate
hierarchy. Traditionally, the expression for Hn is con-
structed using a mathematical formulation that does
not make explicit reference to the Lagrangians of the
equations in the hierarchy. However, a Lagrangian-
based approach can be used to identify Hn as the
Hamiltonian density of the nth hierarchical equa-
tion [8].

The nonlinear transformation of Miura or the so-
called Miura transformation [9]

u = vx + v2, v = v(x, t) (10)

converts the KdV equation into the modified KdV
(mKdV) equation

vt = v3x −6v2vx. (11)

This equation differs from the KdV equation only be-
cause of its cubic nonlinearity. It has much applicative
relevance. For example, the mKdV equation has been
used to describe acoustic waves in anharmonic lattices
and Alfvén waves in a collisionless plasma. It is of
interest to note that the recursion operator Λ for the
mKdV equation [10]

Λm = ∂2
x −4v2−4vx∂−1

x v (12)

can be identified from (4) and (10). The equation of the
mKdV hierarchy can be generated by using the relation

vt = Λ n
mvx, n = 0,1,2,3, . . . . (13)

It is straightforward to obtain the equations in the
mKdV hierarchy from those in the KdV hierarchy by
the use of the Miura transformation. However, it is a
nontrivial problem to derive the Lax representation and
construct the bi-Hamiltonian structure of the equations
in the mKdV hierarchy starting from corresponding re-
sults for the KdV equation [11]. In this work we will
deal with these problems. To derive the Magri structure
we will make use of a Lagrangian-based approach.

In addition to the above, another system of our in-
terest is the complex modified KdV (cmKdV) equation
given by

vt = v3x −6|v|2vx. (14)

This equation follows from the third-order nonlinear
Schrödinger equation via an appropriate variable trans-
formation [12]. We will provide a variational formula-
tion of (14) which, on the one hand, allows us to study
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its canonical structure and, on the other hand, serves
as a useful basis to construct an approximate analytical
solution in terms of a trial function. In this context we
note, that the numerical routine for solving such equa-
tions is quite complicated [13] and requires the use of
the Crank Nicolson method for time integration and the
quintic B-spline function for space integration. We be-
lieve that the solution presented by us may serve as an
initial guide for the more ambitious programmes.

In Section 2 we introduce the equations in the
mKdV hierarchy and derive their Lax pair represen-
tation. We will find that the system of equations fol-
lows from the action principle and as such can be ob-
tained from appropriate Lagrangian densities via the
so-called Euler-Lagrange equations. The correspond-
ing Hamiltonian densities constitute the involutive con-
served densities of the mKdV equation. We then study
the bi-Hamiltonian structure of the mKdV equations.
In Section 3 we convert (14) into a variational prob-
lem and thus obtain a Lagrangian representation for
the equation. As a useful application of the Lagrangian
density so derived we work out the canonical form [5]
of the cmKdV equation and also construct a solution
of it by means of sech trial functions and a Ritz opti-
mization procedure [14]. Finally, in Section 4 we try to
summarize our outlook on the present work.

2. The mKdV Hierarchy

The equations of the mKdV hierarchy follow
from (13) for n = 0,1,2,3, . . . . We will construct Lax
pair representations of these equations by taking re-
course to the use of (10) in (6a) and (8). For these

equations we will use a Lagrangian-based method to
obtain the conserved densities which are in involution
and generate the so-called mKdV flow. We will then
try to realize the bi-Hamiltonian structure by an ap-
propriate modification of (9) by the use of the Miura
transformation.

2.1. The Lax Pair Representation

From (6a), (6b) and (10) we write

L = −∂2
x + v2 + vx (15a)

and

A = 4∂3
x −3(v2 + vx)∂x −3∂x(v2 + vx). (15b)

Using (15) in (7) we get

(∂x + 2v)(vt − v3x + 6v2vx) = 0. (16)
As with (11), (16) gives the mKdV equation. In view
of this we will denote the Lax pair in (15) by Lm

and Am just to indicate that these refer to the mKdV
equation. We will follow this convention for all op-
erators and functions related to the mKdV equation.
Consistently with the notation of (8) Am(= A) stands
for Am

1 . In close analogy with the case of higher KdV
equations the original spectral problem for the mKdV
equations characterized by the operator Lm remains un-
changed as we go up the hierarchy but the differential
operators Am

n change with n. From (10) and the results
given in [3, 4] one can calculate the expressions for Am

n ,
n = 2,3,4, . . . . In the following we present some of our
results:

Am
2 = 16∂5

x +(25v2
x + 30v2vx + 10vv2x + 15v4 + 5v3x)∂x −20(v2 + vx)∂3

x

+ ∂x(25v2
x + 30v2vx + 10vv2x + 15v4 + 5v3x)−20∂3

x(v
2 + vx),

(17a)

Am
3 = 64∂7

x −140(v4 + 3v2
x + 2v2vx + 2vv2x + v3x)∂3

x + 112(v2 + vx)∂5
x

−140∂3
x(v

4 + 3v2
x + 2v2vx + 2vv2x + v3x)+ 112∂5

x(v
2 + vx)

+ (70v6 + 210v4vx + 1050v2v2
x + 210v3

x + 140v3v2x + 840vvxv2x + 721v2
2x + 70v2v3x)∂x

+(798vxv3x + 182vxv4 + 91v5x)∂x + ∂x(70v6 + 210v4vx + 1050v2v2
x + 210v3

x)

+ ∂x(140v3v2x + 840vvxv2x + 721v2
2x + 70v2v3x + 798vxv3x + 182vxv4 + 91v5x),

(17b)

and

Am
4 = 256∂9

x −255v8x−1794v7x∂x −510vv7x−1152vx∂7
x −1152v2∂7

x −5628v6x∂2
x + 2100vxv6x

−3588vv6x∂x + 5670v2v6x −4032v2x∂6
x −8064vvx∂6

x −10248v5x∂3
x −7224v2xv5x
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−11256vv5x∂2
x −15594vxv5x∂x + 18312vvxv5x + 5934v2v5x∂x + 11340v3v5x

−8736v3x∂5
x −17472vv2x∂5

x −15456v2
x∂5

x + 4032v2vx∂5
x + 2016v4∂5

x −11760v4x∂4
x

−11760v3xv4x −20496vv4x∂3
x −39204v2xv4x∂x + 19152vv2xv4x −43680vxv4x∂2

x

+ 12600v2v4x∂2
x + 68670v2

xv4x + 41100vvxv4x∂x + 70224v2vxv4x + 11868v3v4x∂x

−210v4v4x −23520vv3x∂4
x −60240vxv2x∂4

x + 10320v2v2x∂4
x + 20640vv2

x∂4
x + 20640v3vx∂4

x

−25758v2
3x∂x + 12180vv2

3x−66864vxv3x∂3
x + 15120v2v3x∂3

x −87360v2xv3x∂2
x

+ 170268vxv2xv3x + 69720vxv2xv3x∂x + 130200v2v2xv3x + 75600vvxv3x∂2
x + 25200v3v3x∂2

x

+ 81660v2
xv3x∂x + 64596vv2

xv3x + 93336v2vxv3x∂x −15960v3vxv3x −6300v4v3x∂x −420v5v3x

−50568v2
2x∂

3
x + 73920vvxv2x∂3

x + 28560v3
x∂3

x + 68880v2v2
x∂3

x −5040v4vx∂3
x −1680v6∂3

x

+ 19026v2
2x + 50400vv2

2x∂
2
x + 114480vxv2

2x∂x + 88452vvxv2
2x + 67272v2v2

2x∂x −15120v3v2
2x

+ 118440v2
xv2x∂2

x + 161280v2vxv2x∂2
x −7560v4v2x∂2

x + 208488vv2
xv2x∂x + 57960v3

xv2x

−66780v2v2
xv2x −60480v3vxv2x∂x −27720v4vxv2x −12600v5v2x∂x + 1260v6v2x

+ 85680vv3
x∂2

x −30240v3v2
x∂2

x −15120v5vx∂2
x + 28518v4

x∂x −27720vv4
x −57960v2v3

x∂x

−37800v3v3
x −44100v4v2

x∂x + 7560v5v2
x + 2520v6vx∂x + 2520v7vx + 630v8∂x. (17c)

Using (15a) and (17a) in (7) we get

(∂x + 2v){vt − v5x + 40vvxv2x + 10v2v3x

+10v3
x −30v4vx} = 0.

(18)

The expression inside the curly brackets represents the
equation obtained from (13) with n = 2. Results simi-
lar to that in (18) hold good for any pair like [Am

n ,Lm].
This observation serves as a useful check on our results
for Am

n with arbitrary values of n.

2.2. The Bi-Hamiltonian Structure

Here we will demonstrate the bi-Hamiltonian struc-
ture of (11) and all higher-order equations obtained
from (13) with n = 2,3,4, . . . . We note that a single
evolution equation ut = P[u], uε R is never the Euler-
Lagrange equation of a variational problem [10]. One
common trick to put a single evolution equation into a
variational form is to replace v by a potential function:

v = −wx, w = w(x,t). (19)

The function w is often called the Casimir potential.
Our expressions for the Lagrangian densities will be
written in terms of w and its appropriate derivatives.
Hamiltonian densities obtained by use of the Legendre
map can, however, be expressed in terms of the field
variable v(x, t) and its derivatives.

The linear equation obtained from (13) with n = 0
reads

vt = vx. (20)

From (19) and (20),

wxt = wxx = P[wx] (say). (21)

Equivalently,

wt = wx. (22)

In writing (22) we have used the boundary condi-
tion limit w(x, t) = 0 as x →±∞. The self-adjointness
of P[wx] ensures the existance of a Lagrangian for (21)
and (22). In this case, the Lagrangian density can be
constructed using the homotopy formula [10]

L[ξ ] =
∫ 1

0
ξ P[λ ξ ]dλ . (23)

From (23) we get

Lm
0 =

1
2

wtwx − 1
2

w2
x . (24a)

The subscript zero is self-explanatory. The Hamilto-
nian density obtained from (24a) is given by

Hm
0 =

1
2

w2
x =

1
2

v2. (25a)
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The Lagrangian and Hamiltonian densities for the
mKdV (n = 1) and higher-order equations obtained
from (13) for n = 1, 2, 3 and 4 are given by

Lm
1 =

1
2

wt wx − 1
2

wxw3x +
1
2

w4
x , (24b)

Hm
1 =

1
2

vv2x − 1
2

v4 , (25b)

Lm
2 =

1
2

wt wx − 1
2

w2
3x −w6

x −5w2
xw2

2x , (24c)

Hm
2 =

1
2

v2
2x + v6 + 5v2v2

x , (25c)

Lm
3 =

1
2

wtwx − 1
2

wxw7x +
7
2

w3
xw5x

+14w2
xw2xw4x +

21
2

w2
xw2

3x +
35
2

wxw2
2xw3x

−35
3

w5
xw3x − 70

3
w4

xw2
2x +

5
2

w8
x ,

(24d)

Hm
3 =

1
2

vv6x − 7
2

v3v4x −14v2vxv3x − 21
2

v2v2
2x

−35
2

vv2
xv2x +

35
3

v5v2x − 70
3

v4v2
x −

5
2

v8,
(25d)

and

Lm
4 =

1
2

wtwx − 1
2

wxw9x +
9
2

w3
xw7x + 27w2

xw2xw6x

+57w2
xw3xw5x +

105
2

wxw2
2xw5x −21w5

xw5x

+
69
2

w2
xw2

4x + 189wxw2xw3xw4x −168w4
xw2xw4x

+
91
2

wxw3
3x −126w4

xw2
3x −518w3

xw2
2xw3x

+
105
2

w7
xw3x −133w2

xw4
2x +

315
2

w6
xw2

2x −7w10
x ,

(24e)

Hm
4 =

1
2

vv8x − 9
2

v3v6x −27v2vxv5x −57v2v2xv4x

−105
2

vv2
xv4x + 21v5v4x − 69

2
v2v2

3x −189vvxv2xv3x

+168v4vxv3x − 91
2

vv3
2x + 126v4v2

2x + 518v3v2
xv2x

−105
2

v7v2x + 133v2v4
x −

315
2

v6v2
x + 7v10.

(25e)

Results of the Hm
n for still higher values of n can be

obtained in a similar manner. As a useful check on
our expressions, one can verify that these results are in
exact agreement with those obtained by application of
the Miura transformation on the well known conserved
densities of the KdV equations.

The bi-Hamiltonian structure of equations in the
mKdV hierarchy can easily be verified by using our
Hamiltonian functionals in

vt = ∂x

(
δHm

n

δv

)
= E

(
δHm

n−1

δv

)
,

n = 1,2,3, . . . ,

(26)

where

E = (∂3
x −4v2∂x −4vx∂−1

x v∂x). (27)

The first Hamiltonian operator ∂x in (26) is the same
as that in (9) while the second has been obtained
from [10]:

E = Λm∂x. (28)

The operators ∂x and E are skew symmetric and satisfy
the Jacobi identity. Thus they constitute two compati-
ble Hamiltonian operators such that all equations ob-
tained from (13) are integrable in Liouville’s sense [7].

3. The cmKdV Equation

The cmKdV equation in (14) can be restated as a
variational problem given by

δ
∫ ∫

L(v,v∗,vx,v∗x ,v3x,v∗3x,vt ,v∗t ,x, t)dxdt = 0 (29)

with the Lagrangian density written as

L =
1
2
(v∗vt − vv∗t )−

1
2
(v∗v3x − vv∗3x)

+
3
2

vv∗(v∗vx − vv∗x).
(30)

The Euler-Lagrange equations corresponding to (29)
are

d
dt

(
∂L
∂vt

)
− δL

δv
= 0 (31a)

and

d
dt

(
∂L
∂v∗t

)
− δL

δv∗
= 0 (31b)

with the variational derivative

δ
δψ

=
3

∑
n≥0

(−∂x)n ∂
∂ψn

. (32)
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Here

ψn = (∂x)nψ . (33)

It is easy to verify that (30) and (31b) give the cmKdV
equation, while (30) and (31a) give the corresponding
complex conjugate equation. The Hamiltonian corre-
sponding to the Lagrangian density (30) is given by

H =
∫

Hdx (34)

with the Hamiltonian density

H =
1
2
(v∗v3x − vv∗3x)−

3
2

vv∗(v∗vx − vv∗x). (35)

In order to show that (14) is a Hamiltonian system we
will write it and its complex conjugate in two different
forms, namely

vt = {v∗(x),H(y)} (36)

and

v∗t = −{v(x),H(y)}. (37)

We have already found an expression for the Hamilto-
nian. Thus our task is to look for a fundamental Poisson
bracket relation for the field variables that reduce (36)
to the cmKdV equation and (37) to the complex conju-
gate one. One can easily check that the required Pois-
son bracket relations are given by

{v(x),v(y)} = {v∗(x),v∗(y)} = δ (x− y). (38)

The relations (36) and (37) can be written in the sym-
plectic form

ηt = J
δH
δη

, η =
(

v
v∗

)
(39)

with J =
(

0
−1

1
0

)
, a skew-adjoint matrix as the Hamil-

tonian operator.
Equation (14) arises in a number of applicative

contexts including the nonlinear evolution of plasma
waves [15]. To our knowledge, there is no well-defined
spectral problem that can easily be used to solve the
cmKdV equation in terms of known transcendental
functions. But a number of works have been envisaged
to obtain the solitory waves and/or soliton solutions of
this equation. See, for example, [13] and references

therein. Here we are interested in providing an accu-
rate approximation solution of (14) by supplementing
the Lagrangian density in (30) with sech trial functions
and a Ritz optimization procedure. We have chosen to
work with the trial function written as

v(x, t) = a(t)sech[(x− y(t))/w(t)]

· e
[
i
(

q(t)+r(t)(x−y(t))+ b(t)
2w(t) (x−y(t))2

)]
.

(40)

Here the parameters a, y, and w are related to the three
lowest-order moments of the v envelope and represent,
respectively, its amplitude, central position, and width.
The other parameters q, r, and b stand for the phase,
velocity (centre of mass), and frequency chirp. Under-
standably, these parameters will all vary with time t.
Using (40) in (30) we get

Ls =
3

∑
i=1

L(i)
s , (41)

where

L(1)
s =

1
2

(x− y
w

)2
a2bwsech2

(x− y
w

)

+a2rẏsech2
(x− y

w

)
−a2q̇sech2

(x− y
w

)

−1
2

(x− y
w

)2
a2ḃwsech2

(x− y
w

)
,

(42a)

L(2)
s =

3a2r
w2 sech2

(x− y
w

)
tanh2

(x− y
w

)

−3a2r
w2 sech4

(x− y
w

)
−a2r3sech2

(x− y
w

)

−3
(x− y

w

)2
a2b2r sech2

(x− y
w

)
,

(42b)

L(3)
s = −3a4r sech4

(
x− y

w

)
. (42c)

Here the dots stand for derivative with respect to t. The
subscript s on L merely indicates that we have inserted
the sech ansatz for v(x, t) into the Lagrangian density.
In terms of (41) the variational principle (29) leads to

δ
∫
〈L〉dt = 0 (43)

with the averaged effective Lagrangian

〈L〉 =
∫ ∞

−∞
Lsdx. (44)



A. Choudhuri et al. · Modified KdV Hierarchy 177

The result for 〈L〉 is given by

〈L〉 = −2wa2r3 −4wa4r− π2

2
a2b2rw

− 2a2r
w

− π2

12
w2a2ḃ−2a2wq̇ + 2a2wrẏ

+
π2

12
a2bwẇ.

(45)

The reduced variational principle expressed by (43) re-
sults in a set of coupled ordinary differential equations
for the parameters of our trial function. From the van-
ishing condition of the variationals

δ 〈L〉
δq

,
δ 〈L〉
δa

,
δ 〈L〉
δy

,
δ 〈L〉
δw

,

δ 〈L〉
δ r

, and
δ 〈L〉
δb

,

we obtain

d
dt

(2a2w) = 0, (46a)

−4awr3 −16wa3r−π2ab2rw− 4ar
w

−π2

6
w2aḃ−4awq̇+ 4awrẏ+

π2

6
abwẇ = 0,

(46b)

− d
dt

(2a2wr) = 0, (46c)

−2a2r3 −4a4r− π2

2
a2b2r +

2a2r
w2

−π2

6
wa2ḃ−2a2q̇+ 2a2rẏ+

π2

12
a2bẇ

− d
dt

(π2

12
a2bw

)
= 0,

(46d)

−6wa2r2 −4wa4 − π2

2
a2b2w

−2a2

w
+ 2a2wẏ = 0,

(46e)

and

−π2a2brw+
π2

12
a2w+

d
dt

(
π2

12
w2a2

)
= 0. (46f)

Equations (46) can be used to write

a2w = constant = E0, (47a)

r = constant, (47b)

da
dt

= −3abr
w

, (47c)

dy
dt

= 3r2 + 2a2 +
π2

4
b2 +

1
w2 , (47d)

dw
dt

= 6br, (47e)

and

db
dt

=
24r
π2

a2

w
+

24r
π2

1
w3 . (47f)

Equation (47a) expresses the variational version of the
energy conservation law [16], while (47b) states that
the centre of mass of the solution of (14) moves with
a constant velocity. For a given value of r, the set
of coupled ordinary differential equations (47c) – (47f)
can easily be solved numerically. Note that knowledge
of a(t), y(t), and w(t) can be used to study |v(x, t)| as
functions of x and t. We worked with the initial con-
ditions a(0) = 1, b(0) = 0, y(0) = 0, w(0) = 1 and
solved these equations using the fourth-order Runge-
Kutta method [17]. First we take r = 0.1 and plot, in
Fig. 1, |v(x, t)| as a function of t for three different val-
ues of x, namely x = 0 (solid curve), x = 10 (dotted
curve) and x = 20 (dashed curve). From these curves it
is clear, that as x increases |v(x, t)| decreases rapidly.
This implies that, for our chosen value of the veloc-
ity, we have a decaying solitary wave solution. Veri-
fying that for still higher values of r the solutions de-
cay more rapidly, we present in Fig. 2 a similar plot
of |v(x, t)| for r = 0.001. Interestingly, |v(x, t)| remains
unchanged as x increases. Thus one can infer that the
solutions of (14) for small values of r behave like soli-
tons.

4. Conclusion

The nonlinear transformation of Miura or the so-
called Miura transformation is an aid to obtain the
modified KdV equation from the KdV equation. We
found that this transformation also provides an ef-
fective way to construct expressions for Lax pairs of
all equations in the mKdV hierarchy. As with the
KdV equations the bi-Hamiltonian structure of the
mKdV equations are traditionally studied using in-
volutive set of conserved Hamiltonian densities with-
out explicit reference to their Lagrangians. We de-
rived a Lagrangian-based approach to realize the bi-
Hamiltonian structure.
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Fig. 1. |v(x,t)| as a function of t for three differ-
ent values of x with r = 0.1. Solid line, x = 0;
dotted line, x = 10; dashed line, x = 20.

Fig. 2. Same as in Fig. 1 but with r = 0.001.

In close analogy with the mKdV equation, the
cmKdV equation in (14) also followed from Hamil-
ton’s variational principle provided the action func-
tional is made to vanish for simultaneous variations
of both v and v∗. In this case the Lagrangian den-
sity is a function of v, v∗ and their appropriate time
and space derivatives. We could use the Hamilto-
nian corresponding to this Lagrangian density to write
the cmKdV equation in the canonical form [5] with
an appropriate Poisson structure. As an added re-
alism we demonstrated that the Lagrangian density
constitutes a basis to derive a semianalytical solu-
tion of (14). We achieved this by taking recourse to
the use of sech trial functions to define a reduced

variational problem which in conjunction with the
Ritz optimization procedure could yield a uncom-
plicated solution of the cmKdV equation. There ex-
ist some sophisticated numerical routines [13, 15] to
solve the equation. However, we feel that the varia-
tional approach sought by us will serve as a comple-
mentary tool towards understanding the properties of
solitary wave- and/or soliton-solutions of the cmKdV
equation.

Acknowledgements

This work is supported by the University Grants
Commission, Government of India, through grant No.
F.32-39/2006(SR).



A. Choudhuri et al. · Modified KdV Hierarchy 179

[1] P. D. Lax, Commun. Pure Appl. Math. 21, 467 (1968).
[2] F. Calogero and A. Degasperis, Spectral Transform and

Soliton, North-Holland Publising Company, New York
1982.

[3] S. Chakraborti, J. Pal, J. Shamanna, and B. Talukdar,
Czech. J. Phys. 52, 853 (2003).

[4] A. Choudhuri, B. Talukdar, and S. B. Datta, Z. Natur-
forsch 61a, 7 (2006).

[5] V. E. Zakharov and L. D. Faddeev, Funct. Anal. Appl.
5, 18 (1971).

[6] C. S. Gardner, J. Math. Phys. 12, 1548 (1971).
[7] F. Magri, J. Math. Phys. 19, 1156 (1978).
[8] S. Ghosh, B. Talukdar, and J. Shamanna, Czech. J.

Phys. 53, 425 (2003).
[9] R. M. Miura, J. Math. Phys. 9, 1202 (1968).

[10] P. J. Olver, Application of Lie Groups to Differential
Equation, Springer-Verlag, New York 1993.

[11] K. Toda, Proc. Inst. Math. NAS Ukraine 43, 377
(2002).

[12] J. Yang, Phys. Rev. Lett. 91, 143903 (2003).
[13] M. S. Ismail, Commun. Nonlinear Sci. Numer. Simul.

14, 749 (2009); D. Irk and I. Dag, Phys. Scr. 77, 065001
(2008).

[14] D. Anderson, Phys. Rev. A 27, 3135 (1983).
[15] G. M. Muslu and H. A. Erbay, Comput. Math. Appl. 45,

503 (2003).
[16] B. A. Malomed, Progr. Opt. 43, 69 (2002).
[17] J. B. Scarborough, Numerical Mathematical Analysis,

IBH Publishing C., New Delhi 1971.


