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1. Introduction

We consider the generalization of Klein-Gordon and
sine-Gordon equations, respectively,

u,t—uﬂ—l—blu—i-bzg(u):f(x,t)—l—h,,(x,t) (1)
and
Uy — txe +g(u) = f(x,1) + he (x,1), (2)

where u is a function of x and ¢, g is a nonlinear func-
tion, and f and & are known differentiable functions.
We focus on the unbounded case of &, (x,1).

The Klein-Gordon and sine-Gordon equations
model many problems in classical and quantum me-
chanics, solitons and condensed matter physics. Nu-
merical solutions of Klein-Gordon equations and sine-
Gordon equations have been investigated considerably
in the last few years. Ablowitz and Herbst [1] pre-
sented the numerical results of the sine-Gordon equa-
tion. Ablowitz et al. [2] investigated the numerical
behaviour of a double-discrete, completely integrable
discretization of the sine-Gordon equation. Kaya [3]
used the modified decomposition method to obtain

approximate analytical solutions of the sine-Gordon
equation. In [4], four finite difference schemes for
approximating the nonlinear Klein-Gordon equation
were discussed. Wazwaz [5] used the tanh method to
obtain the exact solution of the sine-Gordon equation.

The purpose of the presented paper is to extend the
class of solvable Klein-Gordon- and sine-Gordon-type
equations by introducing the new type of initial con-
ditions. We apply the homotopy-perturbation method
(HPM), first proposed by He [6] and further devel-
oped and improved by He [7-11], to get the approx-
imate solutions. He considered mainly the differential
equations with analytical right-hand side (see for ex-
ample [10], p. 1172).

2. The Extended Problem

In this section, we will introduce a new, extended
form of initial conditions and apply the modified
HPM [12] to get an approximate solution. We intro-
duce the initial conditions as
lir%u(x,t) = lina [o(x,1) + h(x,1)],

11—

11—

limu, (x,¢) = Um [@ (x,1) + By (x,1)], )
t—0 t—0
where ¢ (x,) and h(x,7) are given functions and @ (x,?)
is bounded. The case h(x,7) = 0, lim,_¢ @(x,t) =
¢(x,0), and lim,_¢ @ (x,#) = @ (x,0) (that is, ¢ and ¢
are continuous functions) corresponds to the standard
Klein-Gordon and sine-Gordon equations. The case
¢ = h =0 corresponds to the standard [12] initial value
problem (IVP) u(x,0) =0, u;(x,0) = 0.
Let us rewrite (1) as

Lu+Nu:f(xvt)+htt(xvt)» “4)

where L and N are, respectively, the linear and nonlin-
ear operators.

According to the HPM, we construct a homotopy
which satisfies the relation

H(u,p) = Lu— Lvo+ pLvg

+ p[Nu— f(x,t) — hy(x,7)] = 0, ©)

where p € [0,1] is an embedding parameter and vy is
an arbitrary initial approximation satisfying the given
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initial conditions. When we put p =0 and p = 1 in (5),

we obtain
H(u,0)
H(u,1)

=Lu—Lvog=0 and

=Lu+Nu— f(x,1) — ©

ht[(x,t) = O,

which are the linear and nonlinear original equations,
respectively.
We introduce an alternative way of choosing the ini-
tial approximations, that is
Vo = (P(xat) +t(Pl‘(xvt) +6L71 (f(x?t)+htt(xat))? (7)

where 6 = 1, if Ay (x,¢) is unbounded in ¢ for fixed x,
and & = 0, if Ay (x,t) is bounded or unbounded only
in x for fixed ¢. In the HPM, the solution of (4) is ex-
pressed as

u(x,t) = ug(x,1) + puy (x,1) + p*up (x,1) +--- . (8)

Hence, the approximate solution of (4) can be ex-
pressed as a series of powers of p, i.e.

uzlin}u:uo—i—ul—l—uz—l—-w. 9
p*}

3. Applications
In order to assess both the applicability and the ac-

curacy of the procedure in case of unbounded %, some
test examples are considered.

3.1. Example 1

First we consider the linear Klein-Gordon equation
unbounded in the x right-hand side

Ut — e = t+ (14 1)x2[cosInx + (1 —x?) sinInx]

(10)

with the (oscillatory) initial conditions
u(x,0) =sinlnx, (u), (x,0) =sinlnx.  (11)
[Thatis @(x,t) = (1+4¢)sinlnx and k(x,7) = 0in (3).]

We construct a homotopy which satisfies the relation

- (VO)tt +p[(V0)t1 —Uxx— U

—(t41)x2(coslnx+ (1 —x?) sinlnx)]. (12

Now substituting (8) into (12) and (11) and equating
the coefficients of like powers of p, we get the system
of equations

(o) — (vo)u =0, up(x,0) = sinlnux, (13)
(u9)¢(x,0) = sinlnux,
(ul)rt + ( ) (uO)xx —Up

= (t41)x ?[coslnx+ (1 —x%)sinlnx],  (14)
ul(-x70) 7 (Ml)[(.x,()) :()7
(u2)ir — (u1) e — 1 =0, (15)

u(x,0) =0, (u2);(x,0) =0,

etc. According to the alternative technique given by (7)
for choosing the initial approximation vy, we have vo =
(t+ 1) sinlnx. Thus solving (13) - (15) yields

uo(x,t) =

Hence, we have the exact solution u(x,t) =
sinlnx.

(t+ )sinlnx, w3 =up=...=0.

(t+1)

3.2. Example 2

Now we consider the equation
Uy — Uy + u? = —xt2
with the initial conditions

li t —xInt) =0
Jim (u(x,1) +x —xlIng) =0,

lim (u; (x,t) —xt ') =0.

t—0+

We construct a homotopy in the following form:
— (Vo) +p [(vo),, + Qe + u? —l—xt_z] .

By assuming the initial approximation vo = @(x,#) +

t@(x,t) + L7 (f(x,t) + hy (x,1)) = x + xInt, we have
(o), — (Vo) =
tEIOn+ (o (x,8) +x— xlnt) =0,
tEIOn+ ((uo), (x,t) —xt~ ') =0,
(1) + (v0) g — (t0) g+ = —xt 2,
ui(x,0)=0, (u1),(x,0)=0,
(12)yy = (1) +uf =0,

uz(x,0) =0, (”2){ (x,0) =0,
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ti Error Table 1. Error in uy; — uygy + u? +
0.001 301311075 x/t2=0aty.
0.002 2.7642-1075
0.004 2.1041-10~%
0.006 5.1204-1074
0.008 9.3319-10~*
0.009 1.1887-1073

etc. Solving these equations we obtain

uy = x+xInt,

= —3.75¢%% +2.5¢% Int — 0.5t*x* In*t,

uy = —0.2861* — 3.75t°x% +0.7789:%*
—0.096:°x* In® £ + 0.0083/%x* In*#
+ (In?)(0.514¢* — 0.925¢5*)
+ (In?£)(0.435:5x* — 0.0831%).

Some numerical values for the error of the approximate
3-term solution u >~ ug + uy + up are shown in Table 1.

3.3. Example 3
Finally, we consider the nonlinear sine-Gordon-type
equation

Usr — Uy + SINU —xt 12

with the initial conditions
lim

4
_ _ 3] —
Jim (u(x,O) 3x\/t_) 0,
tE)rOnJr (ut (x,1) — Zx\ﬁ) =0.

We take sinu ~ u —u? /6 +u> /120 and construct a ho-
motopy in the following form:

I/t3 I/t5 X

Uy — (V())n'i‘p |:(V0)tt+u—g+m - % .
By assuming the initial approximation vo = %x\/t_3, we
have

(u0), — (vo), =0,
lim ( ug(x,7) — ix\/t_3 =0
t—0+ ’ 3

lim ((up), (x,1

=0+

) —2xv/1) =

3 5

I/t
tup— 0y T

(1) + (v0)y — (u0) 1 6 120

\/Z?

Table 2. Error in wu; —
Uy +sinu — % =0att;.

Error

4.7621-10715
2.7864-107 14
1.2611-10~12
1.1729-10~ 11
5.7082-10~11
1.948.10710

ti  Uapprox.(0.01,1;)
0.01 4.2116-107%
0.02 3.7711-1073
0.04 1.0665-10~*
0.06 1.9588-10~*
0.08 3.0148-10~*
0.1 4.2116-107*

ui(x,0) =0, (1), (x,0)=0,

+M_u_3+u_?_0
7% T120

2)t (x,O) =0,

(MZ)tt (u )
u(x,0)=0, (u

etc. Solving these equations we obtain

3
3 3\ 2
11583 (t )

512 2,5 (ts)%’

1177335
5
uy = 6.16-10r*xV3 + (*)?
-(36 107645 —7.2. 107543
+1.898- 107 %12 —5.132- 107101547

17.327.10 11418 9>+(t3)%

-<1.04.1o— - 173107443
—4.1-107%33 +5.7-10771115°
—4.43-10" 814x7+22 107%17x°
—7.12-107120x 1 4 1.43. 1071223513

_1.52.10" 14,26 15)

Some numerical values for the error of the approximate
3-term solution u >~ ug + u; + up are shown in Table 2.

Note that the error in u;; — ty, + Sinu — x/\/f =0is
small enough for the values of x >> 0 and/ort >> 0,
for example, an error is less than 4.2373 - 10~ for x =
0.2, = 0.1, and an error is less than 3.1264 - 10~2 for
x=0.8,r=0.9.

4. Conclusion

The HPM has been successfully employed to ob-
tain the approximate analytical solutions of the gener-
alized Klein-Gordon and sine-Gordon equations with
unbounded right-hand side. The succes of the HPM
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depends on the proper choice of the initial approxi-
mation. We introduced a new, generalized type of the
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