The Homotopy-Perturbation Method for Solving Klein-Gordon-Type Equations with Unbounded Right-Hand Side

Afgan Aslanov

Mathematics and Computing Department, Beykent University, Istanbul, Turkey

Reprint requests to A. A.; E-mail: afganaslanov@yahoo.com

Z. Naturforsch. **64a**, 149 – 152 (2009); received June 16, 2008 / revised August 4, 2008

The approximate and/or exact solutions of the generalized Klein-Gordon- and sine-Gordon-type equations are obtained. We introduce a new type of initial conditions to extend the class of solvable problems.

Key words: Singularity; Initial Value Problems; Homotopy-Perturbation Method; Klein-Gordon Equation.

1. Introduction

We consider the generalization of Klein-Gordon and sine-Gordon equations, respectively,

$$u_{tt} - u_{xx} + b_1 u + b_2 g(u) = f(x,t) + h_{tt}(x,t)$$
 (1)

and

$$u_{tt} - u_{xx} + g(u) = f(x,t) + h_{tt}(x,t),$$
 (2)

where u is a function of x and t, g is a nonlinear function, and f and h are known differentiable functions. We focus on the unbounded case of $h_{tt}(x,t)$.

The Klein-Gordon and sine-Gordon equations model many problems in classical and quantum mechanics, solitons and condensed matter physics. Numerical solutions of Klein-Gordon equations and sine-Gordon equations have been investigated considerably in the last few years. Ablowitz and Herbst [1] presented the numerical results of the sine-Gordon equation. Ablowitz et al. [2] investigated the numerical behaviour of a double-discrete, completely integrable discretization of the sine-Gordon equation. Kaya [3] used the modified decomposition method to obtain

approximate analytical solutions of the sine-Gordon equation. In [4], four finite difference schemes for approximating the nonlinear Klein-Gordon equation were discussed. Wazwaz [5] used the tanh method to obtain the exact solution of the sine-Gordon equation.

The purpose of the presented paper is to extend the class of solvable Klein-Gordon- and sine-Gordon-type equations by introducing the new type of initial conditions. We apply the homotopy-perturbation method (HPM), first proposed by He [6] and further developed and improved by He [7–11], to get the approximate solutions. He considered mainly the differential equations with analytical right-hand side (see for example [10], p. 1172).

2. The Extended Problem

In this section, we will introduce a new, extended form of initial conditions and apply the modified HPM [12] to get an approximate solution. We introduce the initial conditions as

$$\lim_{t \to 0} u(x,t) = \lim_{t \to 0} [\varphi(x,t) + h(x,t)],$$

$$\lim_{t \to 0} u_t(x,t) = \lim_{t \to 0} [\varphi_t(x,t) + h_t(x,t)],$$
(3)

where $\varphi(x,t)$ and h(x,t) are given functions and $\varphi(x,t)$ is bounded. The case h(x,t)=0, $\lim_{t\to 0}\varphi(x,t)=\varphi(x,0)$, and $\lim_{t\to 0}\varphi_t(x,t)=\varphi_t(x,0)$ (that is, φ and φ_t are continuous functions) corresponds to the standard Klein-Gordon and sine-Gordon equations. The case $\varphi=h=0$ corresponds to the standard [12] initial value problem (IVP) u(x,0)=0, $u_t(x,0)=0$.

Let us rewrite (1) as

$$Lu + Nu = f(x,t) + h_{tt}(x,t), \tag{4}$$

where L and N are, respectively, the linear and nonlinear operators.

According to the HPM, we construct a homotopy which satisfies the relation

$$H(u,p) = Lu - Lv_0 + pLv_0 + p[Nu - f(x,t) - h_{tt}(x,t)] = 0,$$
 (5)

where $p \in [0,1]$ is an embedding parameter and v_0 is an arbitrary initial approximation satisfying the given

initial conditions. When we put p = 0 and p = 1 in (5), we obtain

$$H(u,0) = Lu - Lv_0 = 0$$
 and
 $H(u,1) = Lu + Nu - f(x,t) - h_{tt}(x,t) = 0,$ (6)

which are the linear and nonlinear original equations, respectively.

We introduce an alternative way of choosing the initial approximations, that is

$$v_0 = \varphi(x,t) + t\varphi_t(x,t) + \delta L^{-1}(f(x,t) + h_{tt}(x,t)), (7)$$

where $\delta = 1$, if $h_{tt}(x,t)$ is unbounded in t for fixed x, and $\delta = 0$, if $h_{tt}(x,t)$ is bounded or unbounded only in x for fixed t. In the HPM, the solution of (4) is expressed as

$$u(x,t) = u_0(x,t) + pu_1(x,t) + p^2u_2(x,t) + \cdots$$
 (8)

Hence, the approximate solution of (4) can be expressed as a series of powers of p, i. e.

$$u = \lim_{p \to 1} u = u_0 + u_1 + u_2 + \cdots.$$
 (9)

3. Applications

In order to assess both the applicability and the accuracy of the procedure in case of unbounded h_{tt} , some test examples are considered.

3.1. Example 1

First we consider the linear Klein-Gordon equation unbounded in the *x* right-hand side

$$u_{tt} - u_{xx} = u + (t+1)x^{-2}[\cos \ln x + (1-x^2)\sin \ln x]$$
(10)

with the (oscillatory) initial conditions

$$u(x,0) = \sin \ln x$$
, $(u)_t(x,0) = \sin \ln x$. (11)

[That is $\varphi(x,t) = (1+t) \sin \ln x$ and h(x,t) = 0 in (3).] We construct a homotopy which satisfies the relation

$$u_{tt} - (v_0)_{tt} + p [(v_0)_{tt} - u_{xx} - u - (t+1)x^{-2}(\cos\ln x + (1-x^2)\sin\ln x)].$$
 (12)

Now substituting (8) into (12) and (11) and equating the coefficients of like powers of p, we get the system of equations

$$(u_0)_{tt} - (v_0)_{tt} = 0, \quad u_0(x,0) = \sin \ln x,$$

 $(u_0)_t(x,0) = \sin \ln x,$ (13)

$$(u_1)_{tt} + (v_0)_{tt} - (u_0)_{xx} - u_0$$

= $(t+1)x^{-2}[\cos \ln x + (1-x^2)\sin \ln x],$ (14)
 $u_1(x,0) = 0,$ $(u_1)_t(x,0) = 0,$

$$(u_2)_{tt} - (u_1)_{xx} - u_1 = 0, u_2(x,0) = 0, \quad (u_2)_t(x,0) = 0,$$
 (15)

etc. According to the alternative technique given by (7) for choosing the initial approximation v_0 , we have $v_0 = (t+1) \sin \ln x$. Thus solving (13)–(15) yields

$$u_0(x,t) = (t+1)\sin \ln x$$
, $u_1 = u_2 = \dots = 0$.

Hence, we have the exact solution $u(x,t) = (t+1) \sin \ln x$.

3.2. Example 2

Now we consider the equation

$$u_{tt} - u_{xx} + u^2 = -xt^{-2}$$

with the initial conditions

$$\lim_{t \to 0+} (u(x,t) + x - x \ln t) = 0,$$

$$\lim_{t\to 0+} (u_t(x,t) - xt^{-1}) = 0.$$

We construct a homotopy in the following form:

$$u_{tt} - (v_0)_{tt} + p \left[(v_0)_{tt} + \alpha u_{xx} + u^2 + xt^{-2} \right].$$

By assuming the initial approximation $v_0 = \varphi(x,t) + t\varphi_t(x,t) + L^{-1}(f(x,t) + h_{tt}(x,t)) = x + x \ln t$, we have

$$\lim_{t \to 0+} (u_0(x,t) + x - x \ln t) = 0,$$

$$\lim_{t \to 0+} ((u_0)_t (x,t) - xt^{-1}) = 0,$$

 $(u_0)_{tt} - (v_0)_{tt} = 0,$

$$(u_1)_{tt} + (v_0)_{tt} - (u_0)_{xx} + u_0^2 = -xt^{-2},$$

$$u_1(x,0) = 0, \quad (u_1)_t(x,0) = 0,$$

$$(u_2)_{tt} - (u_1)_{xx} + u_1^2 = 0,$$

 $u_2(x,0) = 0, \quad (u_2)_t(x,0) = 0,$

t_i	Error	Table 1. Error in $u_{tt} - u_{xx} + u^2 + u^2$
0.001	$-3.0131 \cdot 10^{-5}$	$x/t^2 = 0$ at t_i .
0.002	$2.7642 \cdot 10^{-5}$	
0.004	$2.1041 \cdot 10^{-4}$	
0.006	$5.1204 \cdot 10^{-4}$	
0.008	$9.3319 \cdot 10^{-4}$	
0.009	$1.1887 \cdot 10^{-3}$	

etc. Solving these equations we obtain

$$u_0 = x + x \ln t,$$

$$u_1 = -3.75t^2x^2 + 2.5t^2x^2 \ln t - 0.5t^2x^2 \ln^2 t,$$

$$u_2 = -0.286t^4 - 3.75t^2x^2 + 0.7789t^6x^4$$

$$-0.096t^6x^4 \ln^3 t + 0.0083t^6x^4 \ln^4 t$$

$$+ (\ln t)(0.514t^4 - 0.925t^6x^4)$$

$$+ (\ln^2 t)(0.435t^6x^4 - 0.083t^4).$$

Some numerical values for the error of the approximate 3-term solution $u \simeq u_0 + u_1 + u_2$ are shown in Table 1.

3.3. Example 3

Finally, we consider the nonlinear sine-Gordon-type equation

$$u_{tt} - u_{xx} + \sin u = xt^{-1/2}$$

with the initial conditions

$$\lim_{t \to 0+} \left(u(x,0) - \frac{4}{3}x\sqrt{t^3} \right) = 0,$$

$$\lim_{t \to 0+} \left(u_t(x,t) - 2x\sqrt{t} \right) = 0.$$

We take $\sin u \simeq u - u^3/6 + u^5/120$ and construct a homotopy in the following form:

$$u_{tt} - (v_0)_{tt} + p \left[(v_0)_{tt} + u - \frac{u^3}{6} + \frac{u^5}{120} - \frac{x}{\sqrt{t}} \right].$$

By assuming the initial approximation $v_0 = \frac{3}{4}x\sqrt{t^3}$, we have

$$\begin{aligned} &(u_0)_{tt} - (v_0)_{tt} = 0, \\ &\lim_{t \to 0+} \left(u_0(x, t) - \frac{4}{3} x \sqrt{t^3} \right) = 0, \\ &\lim_{t \to 0+} \left((u_0)_t (x, t) - 2x \sqrt{t} \right) = 0, \\ &(u_1)_{tt} + (v_0)_{tt} - (u_0)_{xx} + u_0 - \frac{u_0^3}{6} + \frac{u_0^5}{120} = \frac{x}{\sqrt{t}}, \end{aligned}$$

$$\frac{t_i \quad u_{\text{approx.}}(0.01, t_i) \quad \text{Error}}{0.01 \quad 4.2116 \cdot 10^{-4} \quad 4.7621 \cdot 10^{-15}}$$
 Table 2. Error in $u_{tt} - \frac{x}{\sqrt{t}} = 0$ at t_i .
$$0.02 \quad 3.7711 \cdot 10^{-5} \quad 2.7864 \cdot 10^{-14}$$

$$0.04 \quad 1.0665 \cdot 10^{-4} \quad 1.2611 \cdot 10^{-12}$$

$$0.06 \quad 1.9588 \cdot 10^{-4} \quad 1.1729 \cdot 10^{-11}$$

$$0.08 \quad 3.0148 \cdot 10^{-4} \quad 5.7082 \cdot 10^{-11}$$

$$0.1 \quad 4.2116 \cdot 10^{-4} \quad 1.948 \cdot 10^{-10}$$

$$u_1(x,0) = 0, \quad (u_1)_t(x,0) = 0,$$

 $(u_2)_{tt} - (u_1)_{xx} + u_1 - \frac{u_1^3}{6} + \frac{u_1^5}{120} = 0,$
 $u_2(x,0) = 0, \quad (u_2)_t(x,0) = 0,$

etc. Solving these equations we obtain

$$u_{0} = \frac{4}{3}x\sqrt{t^{3}},$$

$$u_{1} = -\frac{16}{105}t^{2}x\sqrt{t^{3}} + \frac{128}{11583}t^{2}x^{3}\left(t^{3}\right)^{\frac{3}{2}}$$

$$-\frac{512}{1177335}t^{2}x^{5}\left(t^{3}\right)^{\frac{5}{2}},$$

$$u_{2} = 6.16 \cdot 10^{-3}t^{4}x\sqrt{t^{3}} + \left(t^{3}\right)^{\frac{5}{2}}$$

$$\cdot \left(3.6 \cdot 10^{-6}t^{4}x^{5} - 7.2 \cdot 10^{-5}t^{4}x^{3} + 1.898 \cdot 10^{-9}t^{12}x^{5} - 5.132 \cdot 10^{-10}t^{15}x^{7} + 7.327 \cdot 10^{-11}t^{18}x^{9}\right) + \left(t^{3}\right)^{\frac{3}{2}}$$

$$\cdot \left(1.04 \cdot 10^{-3}t^{4}x - 1.73 \cdot 10^{-4}t^{4}x^{3} - 4.1 \cdot 10^{-6}t^{8}x^{3} + 5.7 \cdot 10^{-7}t^{11}x^{5} - 4.43 \cdot 10^{-8}t^{14}x^{7} + 2.2 \cdot 10^{-9}t^{17}x^{9} - 7.12 \cdot 10^{-11}t^{20}x^{11} + 1.43 \cdot 10^{-12}t^{23}x^{13} - 1.52 \cdot 10^{-14}t^{26}x^{15}\right).$$

Some numerical values for the error of the approximate 3-term solution $u \simeq u_0 + u_1 + u_2$ are shown in Table 2.

Note that the error in $u_{tt} - u_{xx} + \sin u - x/\sqrt{t} = 0$ is small enough for the values of x >> 0 and/or t >> 0, for example, an error is less than $4.2373 \cdot 10^{-9}$ for x = 0.2, t = 0.1, and an error is less than $3.1264 \cdot 10^{-2}$ for x = 0.8, t = 0.9.

4. Conclusion

The HPM has been successfully employed to obtain the approximate analytical solutions of the generalized Klein-Gordon and sine-Gordon equations with unbounded right-hand side. The succes of the HPM

depends on the proper choice of the initial approximation. We introduced a new, generalized type of the

initial value problems to extend the scope of solvable problems.

- [1] M.J. Ablowitz and B.M. Herbst, Quaest. Math. 15, 345 (1992).
- [2] M. J. Ablowitz, B. M. Herbst, and C. Schober, J. Comput. Phys. **126**, 299 (1996).
- [3] D. Kaya, Appl. Math. Comput. 143, 309 (2003).
- [4] B. S. Jiminez and L. Vazquez, Appl. Math. Comput. 35, 61 (1990).
- [5] A. M. Wazwaz, Appl. Math. Comput. 167, 1196 (2005).
- [6] J.H. He, Commun. Nonlinear Sci. Numer. Simul. 3, 260 (1998).
- [7] J. H. He, Appl. Math. Comput. 156, 527 (2004).
- [8] J. H. He, Int. J. Nonlinear Mech. 34, 699 (1999).
- [9] J. H. He, Int. J. Nonlinear Mech. 35, 37 (2000).
- [10] J. H. He, Int. J. Mod. Phys. B 20, 1141 (2006).
- [11] J. H. He, Int. J. Mod. Phys. B 20, 2561 (2006).
- [12] M. S. H. Chowdhury and I. Hashim, Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2007.06.091.