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1. Introduction

We consider the generalization of Klein-Gordon and
sine-Gordon equations, respectively,

utt −uxx + b1u + b2g(u) = f (x,t)+ htt(x,t) (1)

and

utt −uxx + g(u) = f (x,t)+ htt(x,t), (2)

where u is a function of x and t, g is a nonlinear func-
tion, and f and h are known differentiable functions.
We focus on the unbounded case of htt(x,t).

The Klein-Gordon and sine-Gordon equations
model many problems in classical and quantum me-
chanics, solitons and condensed matter physics. Nu-
merical solutions of Klein-Gordon equations and sine-
Gordon equations have been investigated considerably
in the last few years. Ablowitz and Herbst [1] pre-
sented the numerical results of the sine-Gordon equa-
tion. Ablowitz et al. [2] investigated the numerical
behaviour of a double-discrete, completely integrable
discretization of the sine-Gordon equation. Kaya [3]
used the modified decomposition method to obtain
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approximate analytical solutions of the sine-Gordon
equation. In [4], four finite difference schemes for
approximating the nonlinear Klein-Gordon equation
were discussed. Wazwaz [5] used the tanh method to
obtain the exact solution of the sine-Gordon equation.

The purpose of the presented paper is to extend the
class of solvable Klein-Gordon- and sine-Gordon-type
equations by introducing the new type of initial con-
ditions. We apply the homotopy-perturbation method
(HPM), first proposed by He [6] and further devel-
oped and improved by He [7 – 11], to get the approx-
imate solutions. He considered mainly the differential
equations with analytical right-hand side (see for ex-
ample [10], p. 1172).

2. The Extended Problem

In this section, we will introduce a new, extended
form of initial conditions and apply the modified
HPM [12] to get an approximate solution. We intro-
duce the initial conditions as

lim
t→0

u(x, t) = lim
t→0

[ϕ(x, t)+ h(x, t)] ,

lim
t→0

ut(x, t) = lim
t→0

[ϕt(x, t)+ ht(x, t)] ,
(3)

where ϕ(x, t) and h(x, t) are given functions and ϕ(x, t)
is bounded. The case h(x, t) = 0, limt→0 ϕ(x, t) =
ϕ(x,0), and limt→0 ϕt(x, t) = ϕt(x,0) (that is, ϕ and ϕt
are continuous functions) corresponds to the standard
Klein-Gordon and sine-Gordon equations. The case
ϕ = h = 0 corresponds to the standard [12] initial value
problem (IVP) u(x,0) = 0, ut(x,0) = 0.

Let us rewrite (1) as

Lu + Nu = f (x, t)+ htt(x, t), (4)

where L and N are, respectively, the linear and nonlin-
ear operators.

According to the HPM, we construct a homotopy
which satisfies the relation

H(u, p) = Lu−Lv0 + pLv0

+ p[Nu− f (x, t)−htt(x, t)] = 0,
(5)

where p ∈ [0,1] is an embedding parameter and v0 is
an arbitrary initial approximation satisfying the given
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initial conditions. When we put p = 0 and p = 1 in (5),
we obtain

H(u,0) = Lu−Lv0 = 0 and

H(u,1) = Lu + Nu− f (x,t)−htt(x,t) = 0,
(6)

which are the linear and nonlinear original equations,
respectively.

We introduce an alternative way of choosing the ini-
tial approximations, that is

v0 = ϕ(x, t)+tϕt(x,t)+δL−1( f (x,t)+htt (x,t)), (7)

where δ = 1, if htt(x,t) is unbounded in t for fixed x,
and δ = 0, if htt(x,t) is bounded or unbounded only
in x for fixed t. In the HPM, the solution of (4) is ex-
pressed as

u(x, t) = u0(x,t)+ pu1(x,t)+ p2u2(x,t)+ · · · . (8)

Hence, the approximate solution of (4) can be ex-
pressed as a series of powers of p, i. e.

u = lim
p→1

u = u0 + u1 + u2 + · · · . (9)

3. Applications

In order to assess both the applicability and the ac-
curacy of the procedure in case of unbounded htt , some
test examples are considered.

3.1. Example 1

First we consider the linear Klein-Gordon equation
unbounded in the x right-hand side

utt −uxx = u+(t +1)x−2[coslnx+(1−x2)sin lnx]
(10)

with the (oscillatory) initial conditions

u(x,0) = sin lnx, (u)t (x,0) = sin lnx. (11)

[That is ϕ(x, t) = (1 + t)sinlnx and h(x,t) = 0 in (3).]
We construct a homotopy which satisfies the relation

utt − (v0)tt + p
[
(v0)tt −uxx −u

−(t + 1)x−2(coslnx +(1− x2)sin lnx)
]
.

(12)

Now substituting (8) into (12) and (11) and equating
the coefficients of like powers of p, we get the system
of equations

(u0)tt − (v0)tt = 0, u0(x,0) = sin lnx,

(u0)t(x,0) = sin lnx,
(13)

(u1)tt +(v0)tt − (u0)xx −u0

= (t + 1)x−2[coslnx +(1− x2)sin lnx],
u1(x,0) = 0, (u1)t(x,0) = 0,

(14)

(u2)tt − (u1)xx −u1 = 0,

u2(x,0) = 0, (u2)t(x,0) = 0,
(15)

etc. According to the alternative technique given by (7)
for choosing the initial approximation v0, we have v0 =
(t + 1)sin lnx. Thus solving (13) – (15) yields

u0(x, t) = (t + 1)sinlnx, u1 = u2 = . . . = 0.

Hence, we have the exact solution u(x, t) = (t + 1)
sin lnx.

3.2. Example 2

Now we consider the equation

utt −uxx + u2 = −xt−2

with the initial conditions

lim
t→0+

(u(x, t)+ x− x lnt) = 0,

lim
t→0+

(ut(x, t)− xt−1) = 0.

We construct a homotopy in the following form:

utt − (v0)tt + p
[
(v0)tt + αuxx + u2 + xt−2] .

By assuming the initial approximation v0 = ϕ(x, t) +
tϕt(x, t)+ L−1( f (x, t)+ htt(x, t)) = x + x lnt, we have

(u0)tt − (v0)tt = 0,

lim
t→0+

(u0(x, t)+ x− x lnt) = 0,

lim
t→0+

(
(u0)t (x, t)− xt−1) = 0,

(u1)tt +(v0)tt − (u0)xx + u2
0 = −xt−2,

u1(x,0) = 0, (u1)t (x,0) = 0,

(u2)tt − (u1)xx + u2
1 = 0,

u2(x,0) = 0, (u2)t (x,0) = 0,
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ti Error
0.001 −3.0131 ·10−5

0.002 2.7642 ·10−5

0.004 2.1041 ·10−4

0.006 5.1204 ·10−4

0.008 9.3319 ·10−4

0.009 1.1887 ·10−3

Table 1. Error in utt −uxx +u2 +
x/t2 = 0 at ti.

etc. Solving these equations we obtain

u0 = x + x lnt,

u1 = −3.75t2x2 + 2.5t2x2 ln t −0.5t2x2 ln2 t,

u2 = −0.286t4−3.75t2x2 + 0.7789t6x4

−0.096t6x4 ln3 t + 0.0083t6x4 ln4 t

+(lnt)(0.514t4−0.925t6x4)

+ (ln2 t)(0.435t6x4 −0.083t4).

Some numerical values for the error of the approximate
3-term solution u � u0 + u1 + u2 are shown in Table 1.

3.3. Example 3

Finally, we consider the nonlinear sine-Gordon-type
equation

utt −uxx + sinu = xt−1/2

with the initial conditions

lim
t→0+

(
u(x,0)− 4

3
x
√

t3

)
= 0,

lim
t→0+

(
ut(x,t)−2x

√
t
)

= 0.

We take sinu � u−u3/6+u5/120 and construct a ho-
motopy in the following form:

utt − (v0)tt + p
[
(v0)tt + u− u3

6
+

u5

120
− x√

t

]
.

By assuming the initial approximation v0 = 3
4 x
√

t3, we
have

(u0)tt − (v0)tt = 0,

lim
t→0+

(
u0(x,t)− 4

3
x
√

t3

)
= 0,

lim
t→0+

(
(u0)t (x,t)−2x

√
t
)

= 0,

(u1)tt +(v0)tt − (u0)xx + u0 − u3
0

6
+

u5
0

120
=

x√
t
,

ti uapprox.(0.01,ti) Error

0.01 4.2116 ·10−4 4.7621 ·10−15

0.02 3.7711 ·10−5 2.7864 ·10−14

0.04 1.0665 ·10−4 1.2611 ·10−12

0.06 1.9588 ·10−4 1.1729 ·10−11

0.08 3.0148 ·10−4 5.7082 ·10−11

0.1 4.2116 ·10−4 1.948 ·10−10

Table 2. Error in utt −
uxx + sinu− x√

t
= 0 at ti.

u1(x,0) = 0, (u1)t (x,0) = 0,

(u2)tt − (u1)xx + u1 − u3
1

6
+

u5
1

120
= 0,

u2(x,0) = 0, (u2)t (x,0) = 0,

etc. Solving these equations we obtain

u0 =
4
3

x
√

t3,

u1 = − 16
105

t2x
√

t3 +
128

11583
t2x3 (

t3) 3
2

− 512
1177335

t2x5 (
t3) 5

2 ,

u2 = 6.16 ·10−3t4x
√

t3 +
(
t3) 5

2

·
(

3.6 ·10−6t4x5 −7.2 ·10−5t4x3

+ 1.898 ·10−9t12x5 −5.132 ·10−10t15x7

+ 7.327 ·10−11t18x9
)

+
(
t3) 3

2

·
(

1.04 ·10−3t4x−1.73 ·10−4t4x3

−4.1 ·10−6t8x3 + 5.7 ·10−7t11x5

−4.43 ·10−8t14x7 + 2.2 ·10−9t17x9

−7.12 ·10−11t20x11 + 1.43 ·10−12t23x13

−1.52 ·10−14t26x15
)
.

Some numerical values for the error of the approximate
3-term solution u � u0 + u1 + u2 are shown in Table 2.

Note that the error in utt −uxx + sinu− x/
√

t = 0 is
small enough for the values of x >> 0 and/or t >> 0,
for example, an error is less than 4.2373 ·10−9 for x =
0.2, t = 0.1, and an error is less than 3.1264 ·10−2 for
x = 0.8, t = 0.9.

4. Conclusion

The HPM has been successfully employed to ob-
tain the approximate analytical solutions of the gener-
alized Klein-Gordon and sine-Gordon equations with
unbounded right-hand side. The succes of the HPM
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depends on the proper choice of the initial approxi-
mation. We introduced a new, generalized type of the

initial value problems to extend the scope of solvable
problems.
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