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Within a simplified atmospheric model the greenhouse effect is treated by analytical methods start-
ing from physical first principles. The influence of solar radiation, absorption cross sections of the
greenhouse molecules, and cloud formation on the earth’s temperature is shown and discussed explic-
itly by mathematical formulae in contrast to the climate simulations. The application of our analytical
results on the production of 20 · 109 t of CO2 per year yields an enlargement of the earth’s surface
temperature of 2.3 ·10−2 ◦C per year in agreement with other estimations.
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1. Introduction

Usually the change of the climate of the earth is
treated by numerical simulations with the aim to take
into account all imaginable influences in order to get
a detailed picture of the behaviour of the climate, e. g.
in consequence of the production of greenhouse gases.
But by this procedure the survey is lost. On the other
hand, this is guaranteed, if one restricts oneself to an at-
mospheric model considering only the most important
properties, which can be solved by analytical meth-
ods. This is the idea of the present paper, so that ev-
erybody with a sufficient knowledge in physics and
in higher mathematics can understand qualitatively as
well as quantitatively the behaviour of the atmosphere
as a consequence of an enlargement of its content of
greenhouse gases1. By such an analytical way the in-
fluence of solar radiation, absorption cross sections of
the greenhouse molecules and cloud formation on the
earth’s temperature can be studied and discussed ex-
plicitly.

2. The Model

In view of the solar constant the model starts from a
nearly constant mean energy flux J of the solar radia-

1It may be historically interesting, that the influence of atmo-
spheric absorbing molecules on the earth’s temperature has been in-
vestigated already very early in 1827 by Fourier [1] and in 1838 by
Pouillet [2] and especially in 1896 by Arrhenius [3]. But their results
could be only preliminary because of the incomplete physical basis
at that time.
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tion on the surface of the earth; this radiation has short
wavelengths (λmax = 4.8 · 10−5 cm) and reaches the
surface more or less immediately. In consequence of
the absorption of this radiation the earth’s surface will
be heated and radiates infrared rays with wavelengths
around 1.7 · 10−3 cm into the atmosphere. The mean
temperature in the atmosphere may be T , its value at
the surface T0; the mean temperature TE of the earth’s
surface itself will be determined later.

As long as the mean free path length l of the in-
frared photons is small compared with the thickness of
the atmosphere as a consequence of absorption and re-
emission by the molecules of the greenhouse gases we
have an energy transport by radiation in form of diffu-
sion of the infrared photons connected with an energy
flux density (1. Fick’s law corresponding to the 2. law
of thermodynamics):

�j = −λ� T (λ > 0), (1)

where

λ ∼ l =
(

∑
Q

nQσQ

)−1

(2)

is the “photon conductivity” of the atmosphere; nQ is
the number density of the molecules of the green-
house gases, σQ their effective absorption cross sec-
tion for infrared photons, and Q indicates the differ-
ent greenhouse gases. The absorption cross section
σQ is determined in the first step by the quantum me-
chanical transition probabilities and is given in spec-
tral decomposition by (sharp line of frequency νQnm =



70 H. Dehnen · The Greenhouse Effect

|EQm −EQn|/h)

σQ(ν) =
2π
3

|EQm −EQn|
h̄2c

|�dQmn|2δ (ν −νQnm) (3)

with the dipole matrix element �dQmn of the oscillating
and rotating molecules. However, in (2) the effective
absorption cross section of the greenhouse molecules
is needed, i. e. (3) must be additionally multiplied
with the probability w(EQm,T ), that the absorbing en-
ergy eigenstate EQm of the molecule is occupied. For
the case of thermodynamic equilibrium (no satura-
tion) w is given by the Boltzmann distribution. Further-
more we average in the following the spectral absorp-
tion cross section σQ(ν) with respect to the frequency
range of the infrared radiation and get

σQ(T ) = σQ(ν)
ν

= ∑
m,n

∫ ∞

0
wQ(EQm,T )σQ(ν)I(ν,T )dν

/∫ ∞

0
I(ν,T )dν,

(4)

where I(ν,T ) represents the radiation spectrum for the
temperature T , which we approximate by that of the
black body radiation. However, also in that simple case
we cannot calculate σQ(T ) “ab initio” according to (4).
Therefore we approximate σQ(T ) within the relevant
frequency range by the tangent of the real course in the
double-logarithmic representation, i. e. by the power
law

σQ(T ) = σ̃Q/T κ , σ̃Q = const. (5)

with κ ≤ 4 in view of the fact, that the denominator
in (4) is proportional to T 4 (Stefan-Boltzmann law);
such an approximation is very reliable for a large tem-
perature range. The exact value of the exponent κ will
be determined later by fitting the results to the observa-
tion. In contrast to this the photon conductivity in (1)
can be given exactly in the case of black body radiation
and reads [4]

λ =
16
3

σ lT 3, (6)

where σ = π2k4/60c2h̄3 = 5.67 · 10−8 W/m2 K4 is
the Stefan-Boltzmann-constant. The energy flux den-
sity (1) goes over into free radiation propagation with-
out scattering, if the free path length l of the infrared
photons is sufficiently large; then the energy flux J of

the sun will be re-emitted into the universe. But before
the balance equation is valid (radiation energy conser-
vation),

J =
∮

�jd�f (7)

for every closed surface around the earth.
According to this model the temperature distribution

of the atmosphere is determined by the absorption of
infrared radiation, whereby we suppose local thermo-
dynamic equilibrium. Heat conductivity and convec-
tion are neglected in the first step, but heat conductivity
could be taken into account very easily by an additional
term in (6); convection will be treated subsequently in
Section 5 and cloud formation in Section 6. On the
other hand the day-night change, the summer-winter
differences and the variations with respect to the geo-
graphic altitude as well as the influences of winds and
oceanic streams are neglected completely. For the case,
that the free path length of the infrared photons will be
comparable with the thickness of the atmosphere, the
model loses its applicability.

3. Temperature, Density and Pressure Distributions
of the Atmosphere

With respect to the conservation of the radiation en-
ergy the integral (7) is valid for any closed surface
around the earth, especially for any sphere of radius r.
Herewith we find

∂T/∂r = T ′ = −3I ∑Q σ̃QnQ

16σr2T 3+κ , I = J/4π . (8)

Additionally there exists hydrodynamical equilibrium
in the atmosphere, i. e. the static Euler equation is valid
(differential barometric equation):

� p + ρ� φ = 0, φ = −MG
r

(without self-gravitation of the air),
(9)

where M is the mass of the earth, G the Newtonian
gravitational constant. If

xQ = nQ/nL (10)

is the ratio between the number density nQ of the
greenhouse molecules in question and that of the air
molecules nL, and

n = nL +∑
Q

nQ (11)
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represents the total number density of molecules, then

nL = n/

(
1 +∑

Q
xQ

)
,

nQ = nxQ/

(
1 +∑

Q′
xQ′

) (12)

is valid and for the density ρ and pressure p of the
atmosphere we find, under the assumption of an ideal
gas for the atmosphere,

ρ = n
mL + ∑Q xQmQ

1 + ∑Q xQ
, p = nkT, (13)

where k is the Boltzmann constant, mQ the mass of
the greenhouse molecules in question, and mL the
mean mass of the air molecules (mean molecular
weight 28.8). The influence of the small radiation pres-
sure is neglected. Insertion of (13) in (9) gives addi-
tionally to (8) a second differential equation

n′kT + nkT ′ +
mL + ∑Q xQmQ

1 + ∑Q xQ
MG

n
r2 = 0 (14)

assuming spherical symmetry. Here the ratio xQ
[see (10)] is considered as a constant parameter in good
agreement with the observations. From (8) and (14)
both variables n(r) and T (r) are to be determined.

Solving (8) with respect to n/r2 and inserting
into (14) results in the exact differential equation

n′kT +nkT ′ − mL + ∑Q xQmQ

∑Q xQσ̃Q

16σMG
3I

T 3+κT ′ = 0

(15)

with the solution

n =
a2

k
T 3+κ −A2/kT, (16)

where A2 is the integration constant and a2 is given by

a2 =
(mL + ∑Q xQmQ)

∑Q xQσ̃Q

4σMG
3(1 + κ/4)I

. (17)

From a2 > 0 it follows κ > −4. The sign of the inte-
gration constant A2 is chosen in such a way, that n is a
monotonic function of T and that the atmosphere pos-
sesses a well defined outer border (n = 0, ρ = 0, p = 0)
with the border temperature

TG =
(

A2

a2

)1/(4+κ)

. (18)

With the boundary condition TG = 0 it follows A2 = 0.
Insertion of (16) in (8) or (14) results immediately

in the following differential equation for T (r):

(4 + κ)kT ′ +
mL + ∑Q xQmQ

1 + ∑Q xQ

MG
r2 = 0. (19)

By separation of the variables we find with the integra-
tion constant B the solution

kT =
mL + ∑Q xQmQ

(4 + κ)(1 + ∑Q xQ)
MG

r
−B. (20)

Furthermore, we have the solution (16) in the
form (A2 = 0)

n =
a2

k
T 3+κ , TG = 0 (21)

and, as border of the atmosphere (T → TG = 0),

R = rmax = b2/B (22)

with the gravitational coupling constant

b2 =
mL + ∑Q xQmQ

(4 + κ)(1 + ∑Q xQ)
MG, (23)

connected with a2 [see (17)] according to

a2 =
1 + ∑Q xQ

∑Q xQσ̃Q
b2 16σ

3I
. (24)

For xQ = 0 we find (1+κ/4)b2 = 4.8 ·10−3 g cm3 s−2

(M = 6 · 1027 g), which is, in view of xQ 	 1, a very
good approximation.

The remaining integration constant B in (20) will be
determined finally by the total absorption cross section
∑Q
∫

nQσQd3x of all greenhouse molecules. From (5),
(12), (20) and (21) it follows:

∑
Q

∫
nQσQd3x = 4πb2 16σ

3k4I

∫ R

R0

(
b2

r
−B
)3

r2dr. (25)

The calculation of the integral gives, after insertion of
the upper limit according to (22),

∫ R

R0

(
b2

r
−B
)3

r2dr =

b6
[

ln
b2

BR0
− 11

6

]
+ 3b4BR0 − 3

2
b2(BR0)2 +

1
3
(BR0)3.

(26)
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Herewith equation (25) must be solved with respect
to B or BR0. But this is not exactly possible in view
of the logarithmic term in (26). Therefore we make the
ansatz

R = R0(1 + ε), ε > 0, (27)

according to which [see (22)]

BR0 = b2/(1 + ε), (28)

and consider ε 	 1. Herewith we obtain from (26)

∫ R

R0

(
b2

r
−B
)3

r2dr =
1
4

b6ε4 + O(ε5), (29)

and (25) results in

ε =
k

2b2

(
3I ∑Q

∫
nQσQd3x

πσ

)1/4

, (30)

whereby also BR0 [see (28) and (31)] is given. The con-
dition ε 	 1 means an upper limit for the total absorp-
tion cross section of the greenhouse molecules.

Now we are able to determine the radial behaviour
of the atmosphere. From (20) and (28) it follows, with
the use of (30),

BR0 = b2


1− k

2b2

(
3I ∑Q

∫
nQσQd3x

πσ

)1/4

 (31)

and2

kT = b2


1

r
− 1

R0
+

1
R0

k
2b2

(
3I ∑Q

∫
nQσQd3x

πσ

)1/4



(32)

with the temperature of the atmosphere at the earth’s
surface T0 = T (r = R0):

T0 =
1

2R0

(
3I ∑Q

∫
nQσQd3x

πσ

)1/4

. (33)

Inversely (33) reads in view of (30) and (23)

ε =
kT0R0

b2 =
(4 + κ)(1 + ∑Q xQ)kT0R0

(mL + ∑Q xQmQ)MG
. (34)

2By the substitution r = R0 + h with h 	 R0 it follows that
T decreases linearly in first approximation with increasing h; one
finds dT/dh = −b2/(kR2

0) = −0.9
1+κ/4

◦C/100 m.

Because of xQ 	 1 it is possible to estimate the value
of ε by (34); one finds, with T0 = 300 K (R0 =
6370 km),

ε = 5.5 ·10−3(1 + κ/4) (xQ = 0), (35)

so that the assumption ε 	 1 is justified. With (32)
and (21) the particle number density (density) and
pressure are given according to (5) as

n =
1 + ∑Q xQ

∑Q xQσ̃Q
b2 16σ

3kI
T 3+κ ,

p =
1 + ∑Q xQ

∑Q xQσ̃Q
b2 16σ

3I
T 4+κ ,

(36)

as well as the border of the atmosphere in view of (27)
and (30) as

R = R0


1 +

k
2b2

(
3I ∑Q

∫
nQσQd3x

πσ

)1/4

 (37)

and the thickness of the atmosphere as

H = R−R0 = R0ε =
kR0

2b2

(
3I ∑Q

∫
nQσQd3x

πσ

)1/4

. (38)

With increasing values of nQ (or xQ) the atmosphere
expands. Together with (35) we can estimate the thick-
ness of the atmosphere as

H 
 35(1 + κ/4) km. (39)

Accordingly the atmosphere would reach only the
mesosphere because of κ ≤ 4. The fact, that the atmo-
sphere is actually higher, may depend on the additional
heating of the upper atmosphere in consequence of so-
lar ultraviolet absorption by O3, which is neglected in
our model.

Evidently, the features of the atmosphere are deter-
mined by the solar radiation I and the total absorp-
tion cross section ∑Q

∫
nQσQd3x of the greenhouse

molecules as well as by the gravitational force of the
earth (b2 ∼ MG). However in T0 [see (33)] b2 drops
out(!), so that the atmospheric temperature at the sur-
face is determined only by the product I ∑Q

∫
nQσQd3x.

The results (33) and (38) reflect very well the influ-
ence of the greenhouse molecules. In the case nQ → 0
the temperature T0 and the thickness H go to zero. Si-
multaneously one finds by logarithmic differentiation
of (33) immediately the enlargement ∆T0 of the atmo-
spheric temperature at the surface in consequence of
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an increasing ∆
∫

nQσQd3x of the total absorption cross
section of the greenhouse molecules

∆T0

T0
=

1
4

∑Q ∆
∫

nQσQd3x

∑Q
∫

nQσQd3x
(40)

as well as, in consequence of an increasing ∆I of the
radiation power I of the sun,

∆T0

T0
=

1
4

∆I
I

. (41)

4. The Temperature of the Surface of the Earth

The temperature TE of the earth’s surface is deter-
mined by the fact, that in the stationary case the sur-
face must re-emit the infalling radiation power. This
consists first of the radiation flux J of the sun and sec-
ond of the infrared photons backscattered by the green-
house molecules in the lower region of the atmosphere
with the thickness of a mean free path length of the
photons.

For calculation of the backscattered infrared radia-
tion we have to determine at first the thickness Rc −R0
of the radiating region by the integral

∫ Rc

R0

l−1dr = 1, (42)

where l−1 is given according to (2), (5), (12), (21) and
(32) by

l−1 = b8 16σ
3k4I

(
1
r
− β

R0

)3

, β = (1+ε)−1. (43)

Only solutions with Rc < R are useful; if they do not
exist, the whole model is not applicable [c. f. (48)]. Per-
forming the integral we get

b8 16σ
3k4I

[
1
2

(
1

R2
0
− 1

R2
c

)
+ 3

β
R0

(
1
Rc

− 1
R0

)

+3
β 2

R2
0

ln
Rc

R0
− β 3

R3
0
(Rc −R0)

]
= 1.

(44)

This equation must be solved with respect to Rc, which
is, however, impossible to be done exactly because of
the logarithmic term. Therefore we make analogously
to (27) the ansatz

Rc = R0(1 + δ ), δ 	 1 (δ > 0) (45)

and expand equation (44) with respect to δ and ε . In
this way we find

δε3 − 3
2

δ 2ε2 + δ 3ε − 1
4

δ 4 =
3k4IR2

0
16σb8 . (46)

This equation of fourth order in δ can be solved easily
because of the binomial series on the left-hand side;
the 4 roots are:

δ1,2 = ε ±
(

ε4 − 3k4IR2
0

4σb8

)1/4

,

δ3,4 = ε ± i
(

ε4 − 3k4IR2
0

4σb8

)1/4

,

(47)

from which, however, in view of 0 ≤ δ ≤ ε , only

δ = ε −
(

ε4 − 3k4IR2
0

4σb8

)1/4

= ε

[
1−
(

1− 4πR2
0

∑Q
∫

nQσQd3x

)1/4] (48)

is useful. The atmosphere must be higher than the free
path length of the infrared photons given by

Rc −R0 = R0δ

=
kR0

2b2

(
3I ∑Q

∫
nQσQd3x

πσ

)1/4

·
[

1−
(

1− 4πR2
0

∑Q
∫

nQσQd3x

)1/4]
.

(49)

Accordingly ∑Q
∫

nQσQd3x ≥ 4πR2
0 must be ful-

filled for δ is real valued and δ ≤ ε . On the
other hand from ε 	 1 it follows ∑Q

∫
nQσQd3x 	

16πσb8/(3k4I), which is, however, realized very well.
The temperature of the atmosphere at r = Rc reads

Tc =

1
2R0

[
3I ∑Q

∫
nQσQd3x

πσ

(
1− 4πR2

0

∑Q
∫

nQσQd3x

)]1/4

=

T0

(
1− 4πR2

0

∑Q
∫

nQσQd3x

)1/4

. (50)

Now the backscattered radiation flux JR will be cal-
culated in such a way, that every greenhouse molecule
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in the lower region of the atmosphere [see (49)] ra-
diates with its mean absorption cross section σQ(T )
[see (4)] as a black body with the atmospheric temper-
ature T (r) in direction to the earth’s surface (Kirch-
hoff’s law).3 This gives, with respect to (2),

JR = 4π
∫ Rc

R0

σT 4r2 dr
l

. (51)

Insertion of T (r) and l according to (20), (23), (28)
and (43) yields

JR = 4πb16 16σ2

3k8I

∫ Rc

R0

r2
[

1
r
− β

R0

]7

dr

= 4πb16 16σ2

3k8I

[
1
4

(
1

R4
0
− 1

R4
c

)

+
7
3

β
R0

(
1

R3
c
− 1

R3
0

)
− 21

2
β 2

R2
0

(
1

R2
c
− 1

R2
0

)

+35
β 3

R3
0

(
1
Rc

− 1
R0

)
+ 35

β 4

R4
0

ln
Rc

R0

−21
β 5

R5
0
(Rc −R0)+

7
2

β 6

R6
0
(R2

c −R2
0)

−1
3

β 7

R7
0
(R3

c −R3
0)
]
.

(52)

Because Rc is known only approximately [see (45)
and (48)], it is necessary to expand also the right-hand
side of (52) with respect to δ and ε [see (43) and (45)].
Considering only the leading terms we obtain

JR = 4πb16 2σ2

3k8IR4
0

ε8

[
1−
(

1− δ
ε

)8
]

. (53)

After insertion of ε and δ according to (30) and (48)
we find the simple result

IR = JR/4π =
3
4

I

[
∑Q
∫

nQσQd3x
4πR2

0
− 1

2

]
. (54)

The energy balance for the determination of the sur-
face temperature TE of the earth reads now, under the
assumption of black body radiation of the earth’s sur-
face,

σR2
0T 4

E = I + IR (55)
3The right-hand side of (51) can be read also in such a way, that

every stratum of thickness l within the region Rc ≥ r ≥ R0 radiates
as a black body in direction of the earth.

and results after insertion of (54) in

TE =

{
I

σR2
0

[
1 +

3
4

(
∑Q
∫

nQσQd3x
4πR2

0
− 1

2

)]}1/4

. (56)

Obviously the 2. term within the bracket represents the
greenhouse effect. Of course the limiting case nQ →
0 is not allowed because of δ ≤ ε . However, we see
from (55), that without backscattered infrared photons
the surface temperature of the earth would be

TE(0) = TE(nQ = 0) =
(

I
σR2

0

)1/4

. (57)

Surprisingly the temperatures T0, Tc and TE are inde-
pendent from the exponent κ of the power law (5)
and independent from the gravitational force (b2 ∼
MG), but only determined by the energy flux I of the
sun and by the influence of the greenhouse molecules∫

nQσQd3x, and increase with increasing nQ similar
to the thickness of the atmosphere (ε); however, the
free path length (δ ) decreases. Obviously, the presup-
position of the model, that the thickness of the atmo-
sphere must be larger than the free path length of the
infrared photons, will be fulfilled better and better with
increasing number of greenhouse molecules. On the
other hand the thickness of the atmosphere and free
path length of the infrared photons depend also on the
exponent κ and increase with increasing values of κ by
the factor 1 + κ/4.

For the determination of T0, Tc and TE according
to (33), (50) and (56) the knowledge of the value
∑Q
∫

nQσQd3x is necessary. Because this value is un-
known, we estimate it by the present temperature data.
Without greenhouse molecules the mean temperature
of the earth’s surface would be, according to (57),
TE(0) = −18 ◦C by the use of the solar constant.4

However, the mean surface temperature of the earth
amounts to TE = +18 ◦C. Herewith we find from (56)
and (57)

∑Q
∫

nQσQd3x
4πR2

0
= 1.43, (58)

and from (33) und (50) it follows

T0 = TE(0)

(
3
4

∑Q
∫

nQσQd3x
4πR2

0

)1/4

= −13.6 ◦C; Tc = −81 ◦C.

(59)

4The primary solar constant amounts to 1.368 kW/m2; subtrac-
tion of the albedo yields 957.6 W/m2 at the earth’s surface.
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The magnitude of Tc is in good agreement with the
temperature at the tropopause. Now the exact value
of ε and herewith of the thickness H of the atmosphere
can be determined from (34) and (38); one finds

ε = 4.8 ·10−3(1 + κ/4),
H = 30.4(1 + κ/4) km

(60)

instead of the rough estimations (35) and (39), and
from (48) and (49) we get

δ = 1.25 ·10−3(1 + κ/4),

Rc −R0 = R0δ = 7.9(1 + κ/4) km,
(61)

where the last value is again in accordance with the
height of the tropopause. However, the altitude H
[see (60)] is too small in comparison with the ob-
servation, if we do not take into account the κ cor-
rection. Assuming a mean altitude of the atmosphere
of 55 km, which corresponds to the stratopause, we ob-
tain from (60)

κ = 3.2. (62)

The height of the tropopause amounts then to 14.2 km.
Because the free path length of the infrared photons
reaches a height of 14 km – the height of the total at-
mosphere is 55 km – the model lies at the limit of valid-
ity. The temperature TE of the earth’s surface in depen-
dence of ∑Q

∫
nQσQd3x/4πR2

0 is shown in Figure 1.
For the relative change of the earth’s surface temper-

ature TE in consequence of a small change of the num-
ber of the greenhouse molecules or of a small change
of the solar radiation we find

∆TE/TE =

3
2

[
5 + 6

∑Q
∫

nQσQd3x
4πR2

0

]−1
∑Q ∆

∫
nQσQd3x

4πR2
0

,
(63)

∆TE/TE =
1
4

∆I/I. (64)

The solar radiation fluctuates at the earth’s surface in
the range of 0.3 W/m2 during approximately 10 years
in consequence of the activity of the sunspots; this
gives according to (64) a temperature change of 2.3 ·
10−2 ◦C. On the other hand it follows from (63) to-
gether with (58) for the present situation

∆TE

TE
= 0.16

∑Q ∆
∫

nQσQd3x

∑Q
∫

nQσQd3x

= 2.18 ·10−20∑
Q

∆
∫

nQσQd3x
(65)

Fig. 1. Dependence of the temperature TE of the earth’s sur-
face on the parameter q = ∑Q

∫
nQσQd3x/4πR2

0 according
to (56).

(σQ in cm2). We state as result that changes of the
intensity of the solar radiation give rise to tempera-
ture changes at the earth’s surface by a factor 0.25 and
changes of the absorption of the greenhouse molecules
by a factor 0.16. In the latter cases the knowledge of the
absorption cross sections is very essential. In order to
calculate quantitatively the increase of the surface tem-
perature of the earth in consequence of an increase of
the concentration of the greenhouse gases, e. g. of the
CO2 concentration, the exact knowledge of the proper
absorption cross section σQ(T ) is necessary according
to (4) or (5).

A very rough estimation of σQ(T0) is possible by
the air pressure p0 = p(T0) at the earth’s surface.
From (36) it follows immediately

∑
Q

xQσQ(T0) =
(1 + ∑Q xQ)

p0
b2 16σ

3I
T 4

0 . (66)

Insertion of the known values of p0, T0, I and b2 results
for the case κ = 3 in (xQ 	 1)

∑
Q

xQσQ(T0) = 3.78 ·10−26 cm2. (67)

With xQ 
 3 ·10−4 =̂0.03% we find

∑
Q

σQ(T0) 
 1.26 ·10−22 cm2. (68)
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If one distributes this total absorption cross section in
very rough approximation equally on the four main
greenhouse gases, an enlargement of 20 ·109 t of CO2
per year corresponding to ∆NCO2 = 2.7 ·1038 leads ac-
cording to (65) to an increase of the surface tempera-
ture

∆TE

TE
= 2.78 ·10−4 ⇒ ∆TE = 8.09 ·10−2 ◦C (69)

per year (N =
∫

n d3x).5

A more precise determination of ∆TE in conse-
quence of an increasing CO2 concentration per year
is possible by a half-empirical calculation of σCO2(T0)
by the integral (4). In view of the radiation tempera-
ture of the earth only one absorption line of CO2 is
important, namely that at the wavelength 1.5 ·10−3 cm
(=̂ν = 2 · 1013 Hz); for this frequency no saturation
exists in the atmosphere (for details see Appendix A).
According to the “Hitran”-database [5] the correspond-
ing absorption cross section amounts to σCO2(ν) =
5 ·10−18 cm2. Assuming not a sharp line as in (3) but a
(Doppler and impact) broadened line with a line width
∆ν 
 108 Hz we get from (4)

σCO2(T0) = 1.8 ·10−23 cm2. (70)

Correspondingly the temperature rise per year amounts
now to

∆TE = 4.6 ·10−2 ◦C (71)

in consequence of the mentioned CO2 production rate.
However, the half of this rate is absorbed today by
the oceans, so that the actual temperature rise lies at
∆TE = 2.3 · 10−2 ◦C. The weakness of any prediction
of a temperature rise in consequence of the produc-
tion of greenhouse gases is based on the fact that the
absorption cross section σQ(T ) cannot be determined
very exactly by the present observational data.

5. The Convection

The fact, that TE > T0 [cf. (33) and (56)], implies
a convection in the lowest region of the earth’s atmo-
sphere, by which also a continuous temperature transi-
tion between the earth’s surface and the atmosphere is

5It can be shown for κ = 3, that ∆
∫

nCO2 σCO2 d3x 

1.5∆NCO2 σCO2 (T0). By this calculation one can also show, that NL =
4
7 ∑Q

∫
nQσQd3x/∑Q xQσQ(T0) and p0 = (mL + ∑Q xQmQ) MG

4πR4
0

NL.

In consequence of this we find NL = 1.1 ·1044 =̂ML = 5.2 ·1021 g in
very good agreement with the observation. The total number of the
CO2 molecules (0.038%) amounts to 4.2 ·1040 . The detailed calcu-
lation is presented in Appendix B.

established. Bubbles of atmospheric gas will be heated
at the earth’s surface to the temperature TE and as-
cend within the cooler atmosphere under nearly adi-
abatic cooling until the surrounding atmospheric tem-
perature T is reached. For the adiabatic cooling of the
gas bubbles of the volume V

TgV 2/3 = const. (72)

is valid, where Tg is the temperature of the gas bubble.
For the changing volume

V = NkTg/p, (73)

where N is the molecule number in the bubble, is valid
according to the ideal gas equation, where p is the pres-
sure in the atmosphere equal to the pressure in the gas
bubble, for which we find according to (36)

p = const. T 4+κ . (74)

Insertion of (73) and (74) into (72) yields

T 5/3
g = const. T (8+2κ)/3. (75)

The constant in (75) will be determined at the earth’s
surface, where Tg = TE and T = T0 is valid; thus it fol-
lows

T 5/3
g = T 5/3

E

(
T
T0

)(8+2κ)/3

. (76)

The ascent of the gas bubbles, i. e. the convection, is
stopped, when Tg = T = TK is reached; that means

T 3+2κ
K = T 8+2κ

0 /T 5
E . (77)

With the value of T0 and TE and with κ = 3 we obtain

TK = 243.3 K=̂ −29.7 ◦C. (78)

This temperature corresponds according to the temper-
ature behaviour (32) to the hight [r(TK) = RK]:

RK −R0 = 3.3 km. (79)

Up to this altitude, which is much lower than the
tropopause, convection is active in good agreement
with the observation (weather). This result shows how-
ever simultaneously that convection is not important
for the energy transport into the higher atmosphere.
Therefore, the neglection of the convective energy
transport within the model may be justified retrospec-
tively.
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6. The Influence of Cloud Formation

Clouds have a double influence on the tempera-
ture TE of the earth’s surface. First they reduce the en-
ergy flux I of the sun on the surface, and second they
act similar to the greenhouse gases on the infrared ra-
diation of the earth’s surface. Both effects act against
each other with respect to the temperature TE.

The reduction of the energy flux of the sun follows
from the differential Lambert law

dI = −I
ds
l

, (80)

where l−1 = σwnw represents the free path length of
the solar radiation in the clouds (σw absorption cross
section of the water drops, nw their number density)
and ds means the infinitesimal distance in the cloud.
The integral of (80) reads assuming nearly constant
values for σw (Mie scattering) and nw (stratification)

I = I0e−s/l, (81)

where I0 is the primordial energy flux. Herewith it fol-
lows for the reduction of the intensity

∆I = I − I0 = −I0(1− e−s/l), (82)

where s/l can be represented by

s
l

=
σwNw

4πR2
0

(
Nw =

∫
nwdx3

)
(83)

and is a measure for the covering of the earth’s sur-
face by clouds. Furthermore we consider only small
changes of the cloudiness (∆Nwσw 	 4πR2

0). Then we
can expand (82) with respect to ∆Nw and find together
with (83)

∆I
I

= −σw∆Nw

4πR2
0

. (84)

Now, if we repeat the procedure of (55) considering
additionally the cloud formation connected with reduc-
tion of the solar intensity and backscattering of the in-
frared photons at the temperature T0 (stratification), we
find, instead of (56),

TE(Nw) =

{
I
(
1 + ∆I

I

)
σR2

0

[
5
8

+
3
4

· ∑Q
∫

nQσQdx3

4πR2
0

(
1 +

σw∆Nw

4πR2
0

)]}1/4

,

(85)

where ∆I/I is connected with σw∆Nw according
to (84). Because of the smallness of ∆I and ∆Nw we
can expand and obtain finally

∆TE

TE
=

5
4

[
5 + 6

∑Q
∫

nQσQd3x
4πR2

0

]−1 ∆I
I

(86)

in consequence of the change of the cloudiness, where
its reason is not important. Even cosmic rays are
imaginable as cause [6]. With the present value for
∑Q
∫

nQσQd3x/4πR2
0 [see (58)] it follows

∆TE

TE
= 9.2 ·10−2 ∆I

I
. (87)

Formation of clouds means ∆I < 0 [see (82)] and there-
fore the temperature TE of the earth’s surface decreases
in view of (87) and vice versa. Unfortunately exact data
about changes of the global cloudiness are not avail-
able.

In the case, that we have formation of clouds and
enlargement of the concentration of greenhouse gases,
we must add the results (63) and (86):(

∆TE

TE

)
tot

=
3
2

[
5 + 6

∑Q
∫

nQσQd3x
4πR2

0

]−1

·
[

∑Q ∆
∫

nQσQd3x
4πR2

0
− 5

6
σw∆Nw

4πR2
0

]
.

(88)

Heating (1. term) and cooling (2. term) of the earth’s
surface compensate each other, if

σw∆Nw =
6
5 ∑

Q
∆
∫

nQσQd3x (89)

is valid. This relation does not seem to be unrealis-
tic. But in order to decide this exactly, a backreaction
mechanism is necessary to describe the coupling be-
tween cloud formation and increasing of the concentra-
tion of greenhouse gases, which requires also a better
understanding of cloud formations. Such research will
be started in 2010 at CERN [7]. There will be studied
cloud formation more in detail under laboratory con-
ditions in a cloud chamber, because also cosmic rays
may have an influence on cloud formation.

7. Final Remarks

The analytical method presented here has the advan-
tage, that the influence of the solar radiation, of the ab-
sorption cross sections of the greenhouse gases, and
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of the cloud formation on the earth’s temperature are
given by mathematical formulae explicitly and can be
calculated quantitatively at any time. We are aware,
however, that a critical assumption of our analytical
considerations is that of local thermodynamic equilib-
rium of the atmosphere and the infrared radiation. This
may be fulfilled today only approximately because of
the actually small value of (58). Nevertheless, in spite
of this, our results of increasing temperatures on the
earth are in good agreement with numerical simula-
tions, e. g. with the IPCC reports [8] as well as with
other simple atmospheric models based on energy bal-
ance considerations [9 – 11]. However, for more reli-
able predictions of the evolution of the earth’s tem-
perature more precise determinations of the effective
absorption cross sections of the greenhouse molecules
and of the mechanism of cloud formation seem to be
necessary.

Appendix A

The saturation condition can be derived very easily
with the use of a two-energy-level system (see Fig. 2).
In the stationary case it is valid for the occupation
numbers N1, N2 of the two energy levels E1 and E2
(E2 > E1):

N1B12u(ν12) = N2A21 + N2B21u(ν12). (A.1)

Here A21, B21, B12 are Einstein’s transition probabili-
ties for spontaneous and induced emission and absorp-
tion and u(ν12) is the spectral radiation energy density
of the frequency ν12 = (E2 −E1)/h. According to the
quantum theory,

B12 = B21, A21 = 2u0(ν12)B21, (A.2)

where u0(ν12) is the spectral zero-point energy density
of the radiation field. Insertion of (A.2) into (A.1) re-

Fig. 2. Transitions in a 2-energy-level system according to
absorption (B12) and spontaneous (A21) and induced (B21)
emission.

sults in

2u0(ν12) =
(

N1

N2
−1
)

u(ν12). (A.3)

The saturation condition now reads

u(ν12) � 2u0(ν12) ⇒ N2 → N1. (A.4)

In this case effectively no absorption happens: The
spontaneous emission does not play a role and the
induced emission compensates the absorption com-
pletely; the atmosphere becomes transparent. In view
of the infrared radiation of the earth we choose now
for u(ν12) thermal radiation; then

u(ν12) =
8π
c3

hν3
12

e
hν12
kT −1

, u0(ν12) =
4π
c3 hν3

12 (A.5)

is valid (Planck’s formula). Herewith the saturation
condition (A.4) takes the form

e
hν12
kT −1 	 1. (A.6)

This condition is for ν12 = 2 ·1013 Hz and T � 300 K
not fulfilled for a large extent. Thus there exists no ab-
sorption saturation for CO2 in the atmosphere.

Appendix B

For the estimation of the change of the earth’s sur-
face temperature according to (65) the following prob-
lem arises: Empirically known is the production e. g.
of CO2 molecules per year, i. e. ∆NCO2. Thus we need
the connection between ∆NCO2 and ∆

∫
nCO2σCO2d3x,

which is used in (65).
For this we determine in a first step NQ generally.

According to (12) and (21) we find

NQ =
xQ

1 + ∑Q′ xQ′

a2

k

∫
T 3+κd3x. (B.1)

Using (31) and (32) for substituting the temperature T
we obtain

NQ = 4π
xQ

1 + ∑Q′ xQ′

·
∫ R

R0

a2

k4+κ b2(3+κ)
(

1
r
− 1

R

)3+κ
r2dr.

(B.2)

For evaluating this integral we choose κ = 3 [see (62)]
and use for R the relation (27) with ε 	 1. Then we
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obtain

NQ =
4π
7

xQ

1 + ∑Q′ xQ′

a2b12

k7R3
0

ε7

=
4
7

xQ

∑Q′ xQ′σQ′(T0)
∑
Q′

∫
nQ′σQ′d3x

(B.3)

after insertion of a2 and ε according to (24) and (30),
respectively. In view of (12),

NL =
4
7 ∑

Q

∫
nQσQd3x/∑

Q
xQσQ(T0) (B.4)

follows immediately. A further useful relation follows
from (36) for the atmospheric pressure at the earth’s
surface [cf. (66)]:

p0 =
1 + ∑Q xQ

∑Q xQσQ(T0)
b2 16σ

3I
T 4

0 . (B.5)

After insertion of b2 and T0 according to (23) and (33),
respectively, we find with respect to (B.4)

p0 =

(
mL +∑

Q
xQmQ

)
MG

4πR4
0

NL. (B.6)

This formula is very interesting. It allows to calculate
NL (xQ 	 1; mL, M, R0, p0 are known); then the value
of ∑Q xQσQ(T0) in view of (58) follows from (B.4).
This will be used later.

In a second step we determine the integral∫
nQσQd3x. After insertion of (5), (12) and (21), we

find
∫

nQσQd3x = 4π
xQσ̃Q

1 + ∑Q′ xQ′

a2

k

∫ R

R0

T 3r2dr. (B.7)

Substitution of T according to (31) and (32) results in

∫
nQσQd3x = 4π

xQσ̃Q

1 + ∑Q′ xQ′

a2

k4

∫ R

R0

(
b2

r
−B
)3

r2dr.

(B.8)

This integral is known from (29) and possesses the
value 1

4 b6ε4 (ε 	 1). Insertion of a2 and ε according
to (24) and (30) yields the interesting result, with the
use of (5),
∫

nQσQd3x =
xQσQ(T0)

∑Q′ xQ′σQ′(T0)
∑
Q′

∫
nQ′σQ′d3x. (B.9)

This relation can be proved immediately by insertion
of nQ and σQ.

Finally we combine (B.3) and (B.9) and get∫
nQσQd3x =

7
4

NQσQ(T0). (B.10)

By this relation the desired connection between ∆NQ
and ∆

∫
nQσQd3x can be deduced.

For small (infinitesimal) changes we find from
(B.10)

∆
∫

nQσQd3x=
7
4
[σQ(T0)∆NQ+NQ∆σQ(T0)], (B.11)

where in the last term, according to (5) (κ = 3),

∆σQ(T0) = −3σQ(T0)
∆T0

T0
(B.12)

is valid. By logarithmic differentiation of (33) one gets

∆T0

T0
=

1
4

∆∑Q
∫

nQσQd3x

∑Q
∫

nQσQd3x
, (B.13)

and insertion of (B.12) and (B.13) into (B.11) yields

∆
∫

nQσQd3x

[
1 +

21
16

NQσQ(T0)/∑
Q′

∫
nQ′σQ′d3x

]

=
7
4

∆NQσQ(T0). (B.14)

Finally we eliminate NQ in the bracket by (B.3) and
obtain

∆
∫

nQσQd3x =

7
4

∆NQσQ(T0)

1 +
3
4

xQσQ(T0)
∑Q′ xQ′σQ′(T0)

. (B.15)

Herewith we have achieved our aim. If there would ex-
ist only one greenhouse gas (Q = 1 only) it follows
∆
∫

n1σ1d3x = ∆N1σ1(T0).
Now we apply the result (B.15) to the CO2 problem.

With an air pressure of 1 bar at the earth’s surface we
get from (B.6) NL = 1.1 ·1044 and herewith, from (B.4)
with the use of (58) [cf. (67)],

∑
Q

xQσQ(T0) = 3.78 ·10−26 cm2. (B.16)

On the other hand for CO2 it is valid xCO2 = 3.8 ·10−4

and σCO2(T0) = 1.8 ·10−23 cm2 [see (70)]; then it fol-
lows

xCO2σCO2(T0) = 6.84 ·10−27 cm2. (B.17)
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Insertion of (B.16) and (B.17) into (B.15) yields for
CO2 the final result

∆
∫

nCO2σCO2 d3x = 1.54 ·∆NCO2σCO2(T0). (B.18)

With the approximative value (68) instead of (70) one
obtains nearly the same result.
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