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We discuss the relevance of soliton theory to the modeling of tsunami waves. Our analysis shows
that for the two most devastating tsunamis of the last century, the 2004 Bay of Bengal and the 1960
Chile tsunami, the propagation distances were too short for soliton dynamics to apply. Thus the
shallow water theory is appropriate for the modelling of tsunamis.
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1. Introduction

Tsunamis are exceptionally powerful waves, gener-
ated by earthquakes, landslides, or volcanic erruptions,
sweeping across deep oceans at speeds up to 800 km/h
and rising to heights of up to 30 m as they crash upon
the shore. These extremely long waves, with distances
from crest to trough of more than 100 km, are usually
not more than 1 m high in the deep oceans but they
wreak havoc on certain coastal regions as they increase
their amplitude considerably on approaching the coast.

The importance of tsunami research and analysis
has grown following the catastrophic tsunami of De-
cember 26, 2004, which devastated many coastal com-
munities around the Bay of Bengal [1, 2]. The abil-
ity of predicting with greater accuracy the appearance
of a tsunami and suitably preparing for its arrival de-
pends on a better understanding of how these waves,
once initiated, move, evolve and eventually become
such a destructive force of nature. Two competing the-
ories have been proposed throughout the research lit-
erature. The first is the shallow water theory, which re-
gards tsunamis at sea as being practically linear waves,
acquiring nonlinear features only as they enter shal-
lower regions near the shore, where the bottom topog-
raphy alters considerably the wave characteristics. Al-
ternatively, it seems possible that if a tsunami prop-
agates over large distances, in time, the individually
negligible weak nonlinear factors have a significant
cumulative nonlinear effect that is balanced by dis-
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persion to sustain waves of almost permanent form
at sea, with the tsunami becoming a manifestation of
solitons. The soliton theory – epitomized in the con-
text of water waves by the Korteweg-de Vries (KdV)
equation (see [3]) – represents undoubtedly one of
the main achievements of nonlinear science in the last
forty years. For the KdV equation an initial wave pat-
tern evolves into a finite number of localized wave ele-
vations (called solitons) and an oscillatory tail. Each
soliton retains its identity, with taller waves travel-
ing faster, while the oscillatory tail moves slower, dis-
perses and spreads out in space. Therefore, in time,
the wave pattern evolves into an ordered set of soli-
tons, with the tallest in front, followed by an oscillatory
tail – and the details can be predicted with great accu-
racy (see [3]) from knowledge of the wave pattern at
some earlier instant! For the soliton theory to apply to
tsunamis it is necessary that the propagation distances
are long enough to allow small nonlinear effects that
can be ignored at first to build up into a significant cu-
mulative effect that is balanced by dispersion – giving
thus rise to the KdV equation (see [4, 5]). The propa-
gation distances in the Bay of Bengal were of the order
of 1600 km (see [2]), while the largest earthquake ever
recorded, occuring in May 1960 near the Chilean coast,
produced a tsunami that propagated across the Pacific
Ocean and caused massive destruction in Hawaii and
Japan, after traveling more than 10000 km, respec-
tively 17000 km. It is therefore reasonable to regard
the 1960 Chile tsunami as the best available test case



66 A. Constantin and D. Henry · Solitons and Tsunamis

whether soliton theory is relevant to tsunamis. We will
actually assess the December 2004 tsunami and the
1960 Chile tsunami, showing that in both cases the
propagation distances were too short for tsunami dy-
namics to apply. We conclude with a brief description
of the shallow water theory approach towards the mod-
eling of tsunamis, presenting evidence in support of it.

2. The Relevance of Soliton Theory

Consider a wave propagating at the surface of water
in a sea with an almost flat bed of average depth h0.
Even if it originates from a storm, the typical sea wave
is approximately two-dimensional [6], that is, it has a
fixed propagation direction and practically no horizon-
tal motion orthogonal to the direction of propagation.
To represent such a wave, let x denote the horizontal
direction of propagation and let y be the vertical di-
rection, oriented upwards, with the corresponding ve-
locity field (u, v) in the fluid. Incompressibility with
constant water density ρ = 1 is a physically reasonable
assumption [6], so that the equation of mass conserva-
tion takes the form

ux + vy = 0. (1)

In the absence of strong currents we have

uy − vx = 0, (2)

the flow being irrotational [7], and if g is the constant
acceleration of gravity and P the pressure in the fluid,
the equation of motion is Euler’s equation{

ut + uux + vuy = −Px,
vt + uvx + vvy = −Py−g.

(3)

Ignoring viscosity is physically realistic since the
length scales required for an adjustment due to lami-
nar viscosity are long compared to the typical wave-
length encountered in sea waves [8], and the effects of
friction due to turbulent mixing viscosity are negligible
for sea waves that are not near the breaking stage [9].
The governing equations for water waves are obtained
by supplementing (1) – (3) in the fluid with appropriate
boundary conditions. If y = h(x,t) is the equation of
the free surface, the boundary conditions are{

v = ht + uhx on y = h(x,t),
v = 0 on y = 0,

(4)

P = P0 on y = η(x,t), (5)

where P0 stands for the constant atmospheric pressure.
The conditions (4) express the fact that the free sur-
face y = h(x, t) and the flat bed y = 0 are both inter-
faces, i. e., particles can not move in a transversal direc-
tion at the boundary, while the boundary condition (5)
decouples the motion of the water from that of the air
above it.

To predict the regions where solitons arise as ac-
curate approximations to the surface wave it is nec-
essary to identify the space-time region in which the
KdV equation is an appropriate leading-order approx-
imation of the governing equations. We now intro-
duce the two fundamental parameters δ = h0/λ and
ε = a/h0, where h0 is the average water depth, λ is the
typical wavelength (larger than 150 m for sea waves,
cf. [6]), and a is the typical wave amplitude (rang-
ing from 0.2 m up to 10 m and even larger ampli-
tudes, cf. [6]). The KdV equation describes a bal-
ance between the effects of nonlinearity and disper-
sion, properties represented by the parameters ε and δ ,
respectively. It is well-known [10] that the parame-
ter regime δ 2 = O(ε) is suitable for the appearance
of the KdV equation as a leading-order approxima-
tion to the governing equations in a certain space-
time region. This classical result can be obtained by
defining the nondimensional free surface η by setting
h(x, t) = h0 + aη(x, t) and the nondimensional pres-
sure p by setting P = P0 +g(h0−y)+gh0 p. The nondi-
mensionalization and scaling [11]

x �→ xλ , y �→ yh0, t �→ t λ/
√

gh0

u �→ ε u
√

gh0, v �→ ε vh0
√

gh0/λ , p �→ ε p
(6)

transform the governing equations (1) – (5) into the
equivalent problem


ut + ε (uux + vuy) = −px in 0 < y < 1 + εη ,

δ 2[vt + ε (uvx + vvy)] = −py in 0 < y < 1 + εη ,

uy − δ 2 vx = 0 in 0 < y < 1 + εη ,

v = 0 on y = 0,

v = ηt + ε uηx and p = η on y = 1 + ε η .

(7)

The equations (7) lead in the regime δ 2 = O(ε) to the
KdV equation (see [10, 12]) as a leading-order approx-
imation to the governing equations for ε → 0 in the re-
gion of (x, t)-space, where εt = O(1) and x− t = O(1).
Notice that setting δ 2 = ε in (7) results in the occur-
rence of a single small parameter ε . The system (7) has
a further far-reaching property: the parameter δ can be
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scaled out in favour of ε as follows:

x �→ xδ/
√

ε, y → y, t �→ t δ/
√

ε,

p �→ p, η �→ η , u �→ u, v �→ v
√

ε/δ .
(8)

The advantage of the additional scaling (8) lies in that
it produces the system (7) with δ 2 replaced by ε , for ar-
bitrary δ . This crucial observation makes it possible to
retrieve the KdV equation as the appropriate leading-
order approximation to the governing equations in the
region of (x, t)-space, where εt = O(1) and x − t =
O(1), for any δ , provided only that ε → 0 (see the de-
tailed discussion in [4, 13]). Recalling the performed
scalings and nondimensionalization (8) and (6), the re-
gion where we expect a KdV-type balance to occur is
given by xε

√
ε/(δλ ) = O(1) in the original physical

variables, with t of the same order as x−t
√

gh0 = O(1)
in the physical variables. The interpretation of this
asymptotic result is that, starting with some initial pro-
file on the basis of which we can compute λ and δ , the
KdV balance will occur roughly at distances of order

h5/2
0 a−3/2 = δλ ε−3/2, (9)

from the initial disturbance. Here a is the typical
wave amplitude and h0 is the typical depth, remaining
roughly constant throughout this propagation distance.

Accurate measurements of the Boxing Day 2004
tsunami, provided by a radar altimeter on board of a
satellite, along a track traversing the Indian Ocean/Bay
of Bengal about 2 hours after the main earthquake took
place are available [2]. On their basis we choose a =
1 m. On the other hand, the bathymetry of the cen-
tral Bay of Bengal is relatively flat [14], with an aver-
age depth of h0 = 3 km. The estimate (9) shows that
a distance of about 50000 km is needed for the KdV
balance, which is far in excess of the propagation dis-
tances of less than 1600 km from the epicentre of the
earthquake to the coasts of India, Sri Lanka, or Thai-
land. We conclude that the propagation distances are
much too short for KdV dynamics to develop on this
occasion – a conclusion in agreement with other recent
findings [12, 13, 15].

The best candidate in living memory for a soli-
ton theory approach to tsunamis is another large and
destructive tsunami, triggered by the Great Chilean
Earthquake on May 22, 1960 – at magnitude 9.5
on the moment-magnitude scale and with a rup-
ture zone of over 1000 km the largest earthquake
ever recorded [16, 17]. The tsunami, with epicentre

within 200 km off the coast of central Chile, propa-
gated across the entire Pacific Ocean, reaching maxi-
mum wave heights of 10 m in Hawaii (after 14 hours
and 10000 km away from the epicentre of the earth-
quake) and hitting with waves of 6 m height (7 hours
and about 7000 km further away) the Japanese is-
lands of Honsu and Hokkaido [18]. Due to the ex-
tremely long distances of propagation it was specu-
lated [12, 15, 19] that KdV dynamics were probably
relevant. However, the ocean floor of the Central Pa-
cific Basin is relatively uniform, with a mean depth
of about 4300 m. Taking h0 = 4.3 km in the above
estimate for the occurrence of the KdV balance, for
the soliton theory to become relevant within the to-
tal tsunami propagation distance of about 17000 km,
a wave amplitude exceeding 17 m is required. In 1960
the Pacific Tsunami Warning System was already in
place and tide gauge stations throughout the Chilean
coast [20] allowed for accurate measurements of the
tsunami amplitudes as they hit the Chilean coastal re-
gions shortly after initiation – these being the waves
propagating east/southeast in contrast to the ones prop-
agating in the northwest direction towards Hawaii and
Japan. The average height of the wave measurements
performed on the tsunami waves hitting the Chilean
coast was below 10 m and only at 4 out of 27 lo-
cations were waves in excess of 10 m recorded. The
particularities of the Chilean coast – with a deep sea
trench about 3 km deep along the coast and a very grad-
ual continental slope extending for 150 km from the
coast to the trench [21] – greatly enhance the height of
waves as they approach the shore. We conclude that a
wave amplitude in excess of 17 m is out of question for
the tsunami waves propagating in the northwest direc-
tion towards Hawaii and Japan. Thus the 1960 Chilean
tsunami can not be regarded as a manifestation of the
soliton theory.

3. Conclusions

We conclude with a brief description of the main
features of the shallow water theory approach towards
the modeling of tsunamis. Out in the open sea the non-
linear effects are small, so that linear long wave the-
ory captures the main features. In particular, the waves
propagate at a speed of

√
gh0, with g expressing the

constant acceleration of gravity (9.8 m/s2) – a speed
proportional to the square root of the water depth [4].
In support of this theory is the fact that at the sug-
gested speed of more than 720 km/h, corresponding
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to h0 = 4.3 km, the 1960 tsunami waves originating
near Chile would need about 14 hours to reach Hawaii,
which is about right. Near the shore, however, the
tsunami changes its nature entirely [22, 23]: as depth
decreases, the front of the tsunami wave slows down
so the back of the wave – more than 100 km out at sea
and approaching therefore the shore at a larger speed –

catches up. Incompressibility forces the mass of water
to grow vertically so that the very long tsunami wave
that was barely noticeable in the open sea becomes
shorter but taller and crashes with tons of thundering
water upon the shore. Near the shore nonlinear effects
can not be ignored and the diminishing depth makes
the shallow water theory relevant.
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