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Series solution for a steady flow of a third grade fluid between two porous walls is given by the
homotopy analysis method (HAM). Comparison with the existing numerical solution is shown. It
is found that, unlike the numerical solution, the present series solution holds for all values of the
material parameter of a third grade fluid.
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1. Introduction

During the last few decades the study of non-
Newtonian fluids is motivated by their widespread ap-
plications in industry. Examples of such fluids are
molten plastics, polymers, pulps, foods, and slurries.
The non-Newtonian fluids are mainly classified into
three categories, namely the differential type, rate type
and integral type. One of the simplest subclasses of
differential-type fluids is known as the second grade
fluid. There is a large body of literature dealing with
steady and unsteady flows of a second grade fluid in
various situations. Some interesting works on the flows
of a second grade fluid that have been reported previ-
ously may be mentioned in [1 – 10].

It is a well established fact that second grade fluids
exhibit the normal stress effect and do not show the
shear-thinning and shear-thickening phenomena [11]
which many fluids do. However, third grade fluids [12]
are capable of describing such phenomena. Moreover,
the equation of motion in a third grade fluid is more
complicated than the corresponding equation in a sec-
ond grade fluid. Very recently, Ariel [13] studied the
flow of a third grade fluid bounded by a porous chan-
nel. He found that the developed series solution de-
grades sharply when the material parameter of the third
grade fluid is increased. Later Hayat et al. [14] re-
considered the problem of [13] and found the three
term homotopy solution valid for all values of the third
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grade parameter. The present work is an extension of
[14] allowing an arbitrary number of terms in the ho-
motopy analysis method (HAM) by different operators
to find a new formulation of the HAM.

In the present paper, we will study the flow
of a thermodynamic third grade fluid between two
porous boundaries. The formulated problem is non-di-
mensionalized and will be solved using the HAM [15].
This technique is very powerful and has been already
employed by many workers [16 – 30] for the series so-
lutions of various problems. Here the convergent series
is developed and analyzed.

2. Problem Statement

In this section we briefly introduce the equation for
a steady flow of a third grade fluid between two porous
walls at y = 0 and y = b. The x- and y-axes are taken
parallel and normal to the channel walls, respectively.
There is cross flow of uniform injection of the fluid at
the lower wall with velocity V0 and equal suction at the
upper wall. Employing the same line as drawn by Ariel
[13] and Hayat et al. [14], the dimensionless problem
formulation turned out to be in the form

KRU ′′′+U ′′ −RU ′+ TU ′2U ′′ = −1, (1)

U (0) = U (1) = 0. (2)
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In the above equations

η =
y
b
, U = −µu

b2

(
dp
dx

)−1

, R =
ρV0b

µ
,

K =
α1

ρb2 , T =
6β3b2 (dp/dx)2

µ3 ,

ρ is the density of the fluid, µ is the dynamic viscos-
ity, α1 and β3 are dimensional material parameters, p
is the pressure, u is the x-component of the velocity,
and the prime indicates differentiation with respect to
η . Moreover the signs of material parameter are given
in [12].

Integration of (1) yields

KRU ′′ +U ′ −RU +
T
3

U ′3 = −η + D1, (3)

where D1 is a constant of integration.
Using

U = −1−η
R

+W, (4)

(2) and (3) become

KRW ′′ +W ′ −RW +
T
3

(
1
R

+W ′
)3

= D2, (5)

W (0) =
1
R

, W (1) = 0, (6)

where

D2 = D1 −
(

1 + R
R

)
.

Now letting τ = mη , where m is a suitable constant
whose value is to be determined later, (5) and (6) re-
duce to

KRm2W ′′(τ)+ m
(

1 +
T
R2

)
W ′(τ)

−RW(τ)+
T
R

m2W ′2(τ)+
T
3

m3W ′3(τ) = D3,

(7)

where

D3 = D2 − T
3R3

and the boundary conditions

W (0) =
1
R

, W (m) = 0. (8)

3. Solution by the HAM

According to (7) and the boundary conditions (8),
the solution can be expressed in the form

W (τ) =
+∞

∑
n=0

cnenτ , (9)

where the cn (n = 0,1, . . .) are coefficients to be de-
termined. According to the rule of solution expression
denoted by (9) and the boundary conditions (8), it is
natural to choose

W0(τ) =
em − eτ

R(em −1)
(10)

as the initial approximation to W (τ).
We define an auxiliary linear operator L as

L[φ(τ; p)] =[
KRm2 ∂2

∂τ2 + m
(

1 +
T
R2

)
∂

∂τ
−R
]

φ(τ; p)
(11)

with the property

L[Ceτ ] = 0, (12)

where C is a constant and

m =
1

2KR


−(1 +

T
R2

)
±
√(

1 +
T
R2

)2

+ 4KR


 .

The choice of L is motivated by (9), choosing

m =
1

2KR


−(1 +

T
R2

)
+

√(
1 +

T
R2

)2

+ 4KR


 ,

(13)

and the later requirement that (20) should contain only
one non-zero constant.

From (7) we define the non-linear operator

N[φ(τ; p)] := KRm2

(
∂2φ
∂τ2

)

+ m
(

1 +
T
R2

)(
∂φ
∂τ

)
−Rφ +

T
R

m2
(

∂φ
∂τ

)2

+
T
3

m3
(

∂φ
∂τ

)3

−D3,

(14)
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and then construct the homotopy

H[φ(τ; p)] = (1− p)L [φ(τ; p)−w0(τ)]
−h̄pN [φ(τ; p)] ,

(15)

where h̄ is a non-zero auxiliary parameter. Setting
H[φ(τ; p)] = 0, we have the zero-order deformation
equation

(1− p)L [φ(τ; p)−w0(τ)] = h̄pN[φ(τ; p)], (16)

subject to the boundary conditions

φ(0; p) =
1
R

, φ(m; p) = 0, (17)

where p ∈ [0,1] is an embedding parameter. When the
parameter p increases from 0 to 1, the solution φ(τ; p)
varies from W0(τ) to W (τ). If this continuous variation
is smooth enough, the Maclaurin’s series with respect
to p can be constructed for φ(τ; p), and further, if this
series is convergent at p = 1, we have

W (τ) = W0(τ)+
+∞

∑
n=1

Wn(τ),

where

Wn(τ) =
1
n!

∂nφ(τ; p)
∂pn

∣∣∣
p=0

.

Differentiating (16) and (17) n times with respect to p,
then setting p = 0, and finally dividing by n! , we obtain
the nth-order deformation equation

L[Wn(τ)− χnWn−1(τ)] = h̄Rn(τ)
(n = 1,2,3, . . .),

(18)

subject to the boundary conditions

Wn(0) = 0, Wn(m) = 0, (19)

where Rn is defined as

Rn(τ) = KRm2W ′′
n−1 + m

(
1 +

T
R2

)
W ′

n−1

−RWn−1 +
(

T
R

m2
)n−1

∑
i=0

W ′
i W ′

n−i−1

+
(

T
3

m3
)n−1

∑
i=0

(
W ′

n−i−1

i

∑
j=0

W ′
jW

′
i− j

)

−D3(1− χn)

Table 1. The variation of the velocity in the middle of the
channel, U(1/2), depending the cross-flow Reynolds num-
ber, R, the viscoelastic fluid parameter, K, and the third grade
parameter, T , at N = 15.

R K T Numerical HAM HAM h̄
solution solution solution
[13] [14]

1 0.1 0 0.112549 � 0.112549 [−1.25,−0.05]
1 0.109334 0.109368 0.109333 −1.25
2 0.106976 0.106976 0.106767 −1.05
5 0.100651 0.101969 0.100453 −1.4

0.2 0 0.105169 � 0.105169 [−1.15,−0.05]
1 0.102101 0.102151 0.102101 −1.2
2 0.099691 0.099400 0.0997903 −0.9
5 � � 0.0983401 −1.35

0.5 0 0.090498 � 0.0904982 [−2.2,−0.05]
1 0.087626 0.087673 0.0876259 −1.15
2 0.085475 0.085471 0.0854748 −1.15
5 � � 0.0817459 −1.1

2 0.1 0 0.091280 � 0.0912803 [−1.8,−0.05]
1 0.089911 0.089912 0.0899108 −1.1
2 0.088679 0.088692 0.0886788 −1.25
5 0.085578 0.085708 0.0855739 −1.0

10 � � 0.0813496 −1.3
0.2 0 0.079166 � 0.0791659 [−2.05,−0.05]

1 0.078179 0.078179 0.0781786 −1.0
2 0.077282 0.077288 0.0772817 −1.15
5 0.074993 0.075064 0.0749932 −1.25

10 � � 0.0720381 −1.15
2 0.5 0 0.061230 � 0.0612297 [−2.2,−0.05]

1 0.060643 0.060643 0.0606427 −1.05
2 0.060099 0.060100 0.0600987 −1.05
5 0.058673 0.058690 0.0586734 −1.15

10 � � 0.0567829 −1.3
5 0.1 0 0.052205 � 0.0522052 [−2.05,−0.05]

1 0.052089 0.052089 0.0520889 [−1.0,−0.9]
2 0.051974 0.051974 0.0519741 −1.05
5 0.051638 0.051638 0.0516376 −1.05

10 0.051102 0.051102 0.0511024 −1.05
20 0.050117 0.050119 0.0501174 −1.1
50 � � 0.0476997 −1.35

0.2 0 0.042011 � 0.0420107 [−2.7,−0.05]
1 0.041948 0.041948 0.041948 −1.1
2 0.041886 0.041886 0.0418859 [−1.1,−0.95]
5 0.041703 0.041703 0.0417026 [−1.1,−0.9]

10 0.041407 0.041407 0.0414073 −1.05
20 0.040852 0.040852 0.0408516 −1.1
50 � � 0.0394157 −1.2

0.5 0 0.029777 � 0.0297771 [−1.05,−0.9]
1 0.029750 0.029750 0.0297501 −0.85
2 0.029723 0.029723 0.0297234 −0.85
5 0.029644 0.029644 0.0296439 −1.0

10 0.029514 0.029514 0.0295144 −1.0
20 0.029266 0.029266 0.0292656 −1.05
50 � � 0.0285919 −1.1

with

χn =
{

0, n ≤ 1,
1, n > 1.
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Fig. 1. The velocity in the middle of the chan-
nel versus h̄ for the 10th-order approximation
with R = 5, K = 0.1 and T = 1.

Fig. 2. The velocity in the middle of the chan-
nel versus h̄ for the 10th-order approximation
with R = 5, K = 0.2 and T = 2.

The general solution of (18) is

Wn(τ) = Ŵn(τ)+Ceτ , (20)

where C is a constant and Ŵn(τ) is a particular solu-
tion of (18). The unknown C is obtained by the first
condition of (19), i. e.,

Wn(0) = 0.

In this way, we derive Wn(τ) for n = 1,2,3, . . . succes-
sively. At the Nth-order approximation, we have the
analytic solution of (7), namely

W (τ) ≈W (N)(τ) =
N

∑
n=0

Wn(τ). (21)

The auxiliary parameter h̄ can be employed to adjust
the convergence region of the series (21) in the ho-
motopy analysis solution. But the obtained solution by
(21) has a constant D1, from (3). Now, we can obtain

D1 by satisfying the second condition of (19), or (8),
i. e.,

W (N)(m) = 0,

for any value of h̄.

4. Numerical Results

By means of the so-called h̄-curve, it is straightfor-
ward to choose an appropriate range for h̄ which en-
sures the convergence of the solution series. As pointed
out by Liao [15], the appropriate region for h̄ is a hor-
izontal line segment. Our solution series contain the
auxiliary parameter h̄. We can choose an appropriate
value of h̄ to ensure that the solution series converge.
We can investigate the influence of h̄ on the conver-
gence of U(1/2), the velocity in the middle of the chan-
nel, by plotting the curve of it versus h̄, as shown in
Figs. 1 and 2 for some examples.

Here it is worth mentioning that the HAM solution
is valid for all values of the physical parameters R,
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Fig. 3. The velocity in the middle of the
channel versus h̄ for the 15th-order approx-
imation with R = 1, K = 0.2 and T = 5.

Fig. 4. The velocity in the middle of the
channel versus h̄ for the 15th-order approx-
imation with R = 1, K = 0.5 and T = 5.

K, and T . Therefore, it seems reasonable to assume
that the HAM solution holds even for those values
of the physical parameters for which Ariel [13] had
a problem in obtaining the convergence of the series
solution for large values of T . In Table 1, U(1/2) is
presented for various values of R, K and T , and for
selected h̄ with minimum residual error in the mid-
dle of the channel, which seem reasonable values ac-
cording to Figs. 1 and 2, for example. The numeri-
cal solutions in the first column of Table 1 were ob-
tained by Ariel [13]. The second column stands for an
old formulation of the HAM with three terms, which
was obtained in [14]. In Table 1, ‘�’ means that this
number was not reported by the mentioned references.
The obtained results show that the proper value of h̄
depends considerably on the set of parameters which
have been demonstrated in [14] for an old formulation
of the HAM.

Figures 3 and 4 show the h̄-curves for R = 1, T = 5,
and K = 0.2 and 0.5, respectively. Looking at Table 1,
it has to be remarked that Ariel [13] was not able
to get the convergence of the solution for the above-
mentioned values of the parameters. Thus the HAM
offers an attractive alternative for computing the flow
of viscoelastic fluids where numerical techniques fail
to give the solution for various reasons.

5. Conclusion

We discussed the flow of a nonlinear fluid. An an-
alytical solution of the highly nonlinear problem was
constructed. The obtained series solution strongly de-
pends upon the material parameters of the third grade
fluid. It was found that the velocity field increases upon
increasing the material parameter of a second grade
fluid. This study is an extension of [14] allowing an ar-
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bitrary number of terms in the HAM by different oper-
ators to find a new formulation of the HAM. The HAM
provides a convenient way to control the convergence
of approximation series; this is a fundamental qualita-
tive difference between the HAM and other methods
for finding approximate solutions.
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