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The nonthermal and plasmon effects on elastic electron-ion collisions are investigated in hot quan-
tum Lorentzian plasmas. The modified interaction model taking into account the nonthermal screen-
ing and plasmon effects is employed to represent the electron-ion interaction potential in hot quantum
Lorentzian plasmas. The eikonal phase and differential collision cross-section are obtained as func-
tions of the impact parameter, collision energy, spectral index, and plasma parameters by using the
second-order eikonal analysis. It is shown that the plasmon effect suppresses the eikonal phase and
collision cross-section for 0 < B (= hiwy/kgT < 0.6) and, however, enhances it for 0.6 < f§ < 1,
where @y is the plasma frequency and T is the plasma temperature. It is also shown that the non-
thermal character of the quantum Lorentzian plasma suppresses the elastic electron-ion collision

cross-section.
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The elastic electron-ion collision [1] has been re-
ceiving much attention since this is one of the major
atomic processes and also has applications in many ar-
eas of physics. Recently, atomic collision and radia-
tion processes [2—5] have been widely used as plasma
diagnostics in various plasmas such as weakly and
strongly coupled plasmas. It is known that the char-
acteristic features of plasmas would be comprehended
by exploring the velocity distribution of plasma par-
ticles. The classical Boltzmann plasma is in thermal
equilibrium which implies that there would be no en-
ergy exchanges between the charged particles in plas-
mas. However, coupling of the external field with the
equilibrium plasma most often generates superthermal
electrons departed from the ordinary Boltzmann veloc-
ity distribution in various astrophysical and laboratory
plasmas [6—8]. In addition, the multiparticle correla-
tion effects caused by concurrent interactions of many
plasma particles due to an increase of the plasma den-
sity should be taken into account to characterize the
interaction potential. In these circumstances, the inter-
action potential would not be represented by the clas-
sical Debye-Hiickel potential obtained by the classi-
cal Boltzmann velocity distribution of charged parti-
cles because of the plasmon effects caused by the col-
lective plasma oscillations in hot quantum plasmas [9].

In recent years, there has been a considerable interest
in quantum effects in plasmas [8— 10] since quantum
plasmas have been shown in dense astrophysical plas-
mas, in various nano devices such as quantum dot, and
in laser-produced dense laboratory plasmas [10]. Thus,
it would be expected that atomic collisions in hot quan-
tum nonthermal plasmas would be unquestionably dif-
ferent from those in classical Debye-Hiickel plasmas.

Thus, in the present paper we investigate the non-
thermal and plasmon effects on the elastic electron-
ion collision in hot quantum Lorentzian plasmas. The
modified interaction model [7] taking into account the
nonthermal screening and plasmon effects is engaged
to represent the electron-ion interaction in hot quantum
Lorentzian plasmas. The second-order eikonal method
with the impact parameter analysis is applied to obtain
the eikonal phase and collision cross-section as func-
tions of the impact parameter, collision energy, plasma
parameters, and spectral index of the plasma.

The solution W (r) of the Schrédinger equation for
the interaction potential V (r) can be represented by the
following integral form of the Lippmann-Schwinger
equation [1]:

We(r) = )+ 25 [ VGV, )
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where @ (r) and G(r,r’) are the solution of the homo-
geneous equation and Green’s function, respectively,

(V2 + &%) @(r) =0, )

(V2+K)G(r,r') = 8(r,r'), 3)

k [= (2uE /1*)'/?] is the wave number, u the reduced
mass of the collision system, E (= pv? /2) the collision
energy, v the relative collision velocity, and & (r,r’) the
delta-function. The solution of (2) is then given by
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where GH (r,r) (= —e Il /az|r — 1'|) is the free
outgoing Green’s function [11]. It is shown that the
validity condition of the eikonal method is known
as |V|/E < 1 [11], where |V] is a typical strength of
the interaction potential. Introducing cylindrical coor-
dinates such as r = b + zfi, where b is the impact pa-
rameter, n is the unit vector transverse to the momen-
tum transfer K (= k; — k), k; and k; are the incident
and final wave vectors, respectively, the eikonal scat-
tering amplitude fg(K) is then represented by

i )
-exp [— hléljc /dz’V(b,z’)] .

Since the differential eikonal collision cross-section is
determined by the relation dog/dQ = |fg(K)|?, the
total elastic eikonal collision cross-section O can be
written as

og(k) = /dzb\exp[ixE(b,k)] —1p

(6)

where dQ is the differential solid angle and the eikonal
phase xg(b,k) can be expressed as the following series
expansion form [11, 12]:
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with ‘kl‘ = |kf| =k.
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In many astrophysical and laboratory plasmas, the
important departures from the equilibrium Boltzmann
velocity distribution would be anticipated due to
the strong external disturbances. These so-called su-
perthermal electrons escape the ordinary Boltzmann
distribution corresponding to the bulk of plasma elec-
trons, which can be modeled more effectively by
the Lorentzian velocity distribution [6, 8]. Moreover,
an excellent work by Hasegawa et al. [6] has certi-
fied that the equilibrium plasma distribution function
in the presence of a superthermal radiation field re-
sembles the Lorentzian distribution function. In these
Lorentzian plasmas [8], the characteristic energy Ey
is represented by E, = [(k — 3/2)/Kk]Er, where K
(> 3/2) is the spectral index of the plasma, Ey = kg7,
kg is the Boltzmann constant, and 7 is the plasma tem-
perature. It is also shown that the Debye radius Ly
in Lorentzian plasmas [8] including the nonthermal
character is given by L, = [(x —3/2)/(x— 1/2)]"/2L,
where L is the ordinary Debye radius for the Boltz-
mann distribution. In addition, the remarkably use-
ful analytical form of the modified interaction po-
tential [9, 13] in hot quantum plasmas has been ob-
tained by the quantum approach including the plasmon
effects caused by strong plasma oscillations. These
quantum effects may complicate the picture of the
screened Yukawa-type Debye-Hiickel interaction be-
tween charged particles in plasmas. Using this modi-
fied interaction model [7] with the plasma parameters
for the Lorentzian distribution, the interaction poten-
tial V1, between an electron and ion with charge Ze in
a hot quantum Lorentzian (QL) plasma can be obtained
by

Ze? 1 /L
iy i (O

21— (1- ) e )

where the characteristic parameter B is given
by Bi = [x/(x —3/2)|B, B = hay/Er, hoyp is
the plasmon energy, @y is the plasma frequency,
Lic=[1+(1-B)" ]2 (Li/2'%), Lo =[1- (1~
BHY2)V2 (L /2'/?), and r = (b* + 22)'/2. This poten-
tial would be valid for 0 < B, < x/(x —3/2) since
the plasmon energy hay is expected to be smaller
than E7 in the modified interaction model [7]. If non-
thermal and plasmon effects are absent, the effec-
tive interaction potential (8) goes over into the case
of the classical Debye-Hiickel (DH) potential Vqr, —
VbH = (—Zez/r)e_’/’“ since Ly  — L and Ly , — 0 as

VQL(V, KaﬁaL) =

(®)
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K — oo and B — 0. The comprehensive and detailed
discussion on the mechanisms of plasmon-particle and
plasmon-plasmon collisions and the decay process of
the plasmon can be found in an excellent work by
Tsytovich [14]. After some mathematical manipula-
tions by using (7) and (8) with the identity of the
nth-order of the MacDonald function K,, [15], K,,(z) =
[7'/2)(n— 1/2)1(z/2)" [ dte= (¢ — 1)"~1/2, the to-
tal eikonal phase xg retaining the first- and second-
order contributions for the elastic election-ion collision
in hot quantum Lorentzian plasmas is found to be

= 7-1/2 o
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where b (= b/az) is the scaled impact parame-
ter, az (= ao/Z) the Bohr radius of the hydrogen
ion with nuclear charge Ze, ay (= hz/mez) the
Bohr radius of the hydrogen atom, m the elec-
tron mass, £ (= E /ZzRy) the scaled collision
energy, and Ry (=me* /2}'12% 13.6eV) the Ryd-
berg constant. The scaled screening radii Li .
and ZZ’K are ZI,K (E Llik/az) = [(K— 3/2)/(1('—
221+ (1= (x/( — 3/2))2B2)V/V2(L/2112)
and L« (= Ly /az) = [(k—3/2)/(x— 1/2)}1/2[1 —
(1 = (k/(x — 3/2)2B) V4 V2L/21%), and L
(=L/az) is the scaled ordinary Debye radius.
Thus, the scaled differential collision cross-section
Jd0t [= (dGE/dl_a)/na%] in units of ﬂa(z) within the
framework of the second-order eikonal analysis for
the elastic electron-ion collision in hot quantum
Lorentzian plasmas is obtained as

96 = 2b| explize (b, E, ,B)] — 1|° =
2b|exp{ (i/2)(1 - ﬂ%( ﬁ))"/zE 2 (4
B, B)Ko(Ly k(x,L)B) 21— (1
—B2(x.B)) ] Ko(Lyr (. L)B) | + (i/8)(1
Bk B))PE (4
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Fig. 1. The three-dimensional plot of the total eikonal phase
Xk as a function of the spectral index k and plasmon param-
eter § forb =2, E =10, and L = 100.
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Fig. 2. The three-dimensional plot of the scaled differential
collision cross-section d6 as a function of the spectral in-

dex x and plasmon parameter f§ for b =2, £ = 10, and
L=50.

+L2 K‘(K L))KO((
+4[1— (1 - Bi(x, /3
KoLz (k. 1)B)] } 1‘ .
It has been shown that the quantum tunneling ef-
fects are important when the de Broglie length of
the particle is comparable to the dimension of the
system in quantum plasmas [16]. Recently, an ex-
cellent investigation on the formation and dynam-
ics of solitons and vortices in quantum plasmas
was given by Shukla and Eliasson [16]. In addi-

tion, an excellent discussion on the potential of a
moving test charge in quantum plasmas including

( Z)JrLz,c(K L))b)
]2 2K‘ KL)

(10)
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Fig. 3. The scaled differential collision cross—section_ac_rE as
a function of the impact parameter b for § = 0.6, E = 20,
and L = 50. The solid line represents the case of k¥ = 3. The
dashed line represents the case of k = 5. The dotted line rep-
resents the case of K = 10.
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the quantum Bohm effect was given by Ali and
Shukla [17].

In order to explicitly investigate the nonthermal and
plasmon effects on the elastic electron-ion collision in
hot quantum Lorentzian plasmas, we consider £ > 1
since the eikonal method is known to be valid for
high-collision velocities [11]. From (10), it is explic-
itly shown that the eikonal cross-section depends on
the details of the plasmon and nonthermal effects of
hot quantum Lorentzian plasmas. Figure 1 presents
the three-dimensional plot of the total eikonal phase
xe as a function of the spectral index k and plas-
mon parameter . From this figure, it is shown that
the plasmon effect suppresses the eikonal phase for
0< B (=hay/kgT) < 0.6 and, however, enhances it
for 0.6 < B < 1. Figure 2 shows the three-dimensional
plot of the scaled differential collision cross-section
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