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Starting from a special conditional similarity reduction method, we obtain the reduction equation
of the (2+1)-dimensional dispersive long-water wave system. Based on the reduction equation, some
new exact solutions and abundant localized excitations are obtained.
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1. Introduction

In the study of nonlinear physics, the search of
new exact solutions of nonlinear evolution equations
(NEEs) is one of the most important problems. Var-
ious methods for obtaining exact solutions to NEEs
have been proposed, such as the Lie group method
of infinitesimal transformations [1], the nonclassi-
cal Lie group method [2], the Clarkson and Kruskal
direct method (CK) [3 – 5], the conditional similar-
ity reduction method [6 – 10] and the mapping ap-
proach [11 – 16]. In the past, with the help of the
improved mapping approach, we have derived some
exact excitations of (2+1)-dimensional NEEs, such
as (2+1)-dimensional Broer-Kaup-Kupershmidt sys-
tem, (2+1)-dimensional Boiti-Leon-Pempinelli sys-
tem, (2+1)-dimensional generalized Broer-Kaup sys-
tem [17 – 21]. The thought of the mapping approach
is based on the reduction theory. Now an important
question is whether some simple mapping equations,
such as the Riccati equation, can be gotten by the
method of conditional similarity reduction, i.e., for
a given NEE whether we can transform the NEE to
some simple equations which we want to obtain. If
yes, new exact excitations of the NEE can be de-
rived based on the exact solutions of these simple
equations.

In this paper, we try to extend the conditional simi-
larity reduction method in order to find the conditional
similarity reduction equation and some new exact exci-
tations of the (2+1)-dimensional dispersive long-water
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wave (DLW) system

uty +vxx +uxuy +uuxy = 0,vt +(uv)x +uxxy = 0. (1)

The DLW system was first derived by Boiti et al.
[22] as a compatibility for a “weak” lax pair. In [23],
Paquin and Winternitz showed that the symmetry al-
gebra of (1) is infinite-dimensional and has a Kac-
Moody-Virasoro structure. Some special similarity so-
lutions are also given in [23] by using symmetry al-
gebra and the classical theoretical analysis. The more
general symmetry algebra, W∞, is given in [24]. In [25],
Lou gave out nine types of two-dimensional similarity
reductions and thirteen types of ordinary differential
equation reductions. In the following, we mainly dis-
cuss the conditional similarity reduction and the exact
solutions of the (2+1)-dimensional DLW system; then
we study the dromion and peakon localized excitations
of the system.

2. Conditional Similarity Reduction of the
(2+1)-Dimensional DLW System

As is well known, various approaches can be applied
to search for the solitary wave solutions of a nonlinear
physical model. One of the most efficient methods to
find soliton excitations of a physical model is the so-
called conditional similarity reduction approach.

First, let us make a restriction for (1):

v = uy. (2)
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Substituting (2) into (1) yields

uty + uxxy + uxuy + uuxy = 0. (3)

To obtain some special conditional similarity reduc-
tions of the (3), we may use the simple ansatz

u = f (x,y,t)+ g(x,y,t)φ [q(x,y,t)], (4)

where φ ≡ φ(q) is the function of the q to be deter-
mined, f ≡ f (x,y,t), g ≡ g(x,y,t) and q ≡ q(x,y, t)
are functions of (x,y,t) to be determined. Substituting
ansatz (4) into (3), we have

∑
i

RiFi(φ ,φ ′,φ ′′, · · ·)
= R1φ ′′′ + R2φφ ′′ + R3φ ′′ + R4φφ ′ + R5φ ′

+ R6φ ′2 + R7φ2 + R8φ + R9 = 0,

(5)

where Ri = Ri(x,y,t) are φ -independent functions, and
Fi = Fi(φ ,φ ′,φ ′′, · · · ) are some polynomials of φ and
its derivatives, and

R1 = gqyq2
x, (6)

R2 = g2qyqx, (7)

R3 = gyq2
x + 2gqxqxy + 2gxqxqy + gqyqt

+ gqyqxx + f gqxqy,
(8)

R4 = 2ggxqy + 2ggyqx + g2qxy, (9)

R5 = 2gxyqx + 2gxqxy + gyqxx + gtqy + gyqt

+ gyqx f + fxgqy + gqx fy + gxxqy + gqxxy

+ gqxy f + gqyt + gxqy f ,

(10)

R6 = R2 = g2qyqx, (11)

R7 = gxgy + ggxy, (12)

R8 = gty + fygx +gxxy + fxgy + fxyg+ f gxy, (13)

R9 = f fxy + fxxy + fyt + fx fy. (14)

In the usual CK direct method, function φ satisfies only
one reduction equation. So, we take some or other co-
efficient of Fi as the normalizing coefficient of the en-
tire equation. In this paper, we may separate some R
into two parts, such as

R3 = r31 + r32, R5 = r51 + r52, (15)

where

r31 = gyq2
x + 2gqxqxy + 2gxqxqy,

r32 = gqyqt + gqyqxx + f gqxqy,

r51 = 2gxyqx + 2gxqxy,

r52 = gyqxx + gtqy + gyqt + gyqx f + fxgqy + gqx fy

+ gxxqy + gqxxy + gqxy f + gqyt + gxqy f ,

and separate (5) into three parts. Then we can rewrite
(5) as

R1φ ′′′ + R2φφ ′′ + r32φ ′′ + R6φ ′2
︸ ︷︷ ︸
+R4φφ ′ + r52φ ′ + r31φ ′′

︸ ︷︷ ︸

+r51φ ′ + R7φ2 + R8φ + R9︸ ︷︷ ︸ = 0,

(16)

and require that the ratios of different derivatives and
powers of φ in each part are functions of (x,y, t). In
other words, taking the R1 as the normalizing coeffi-
cient of the first part the r31 as the normalizing coeffi-
cient of the second part and the r51 as the normalizing
coefficient of the third part, we have

R6 = R2 = Γ1R1, (17)

r32 = Γ2R1, (18)

R4 = Γ3r31, (19)

r52 = Γ4r31, (20)

R7 = Γ5r51, (21)

R8 = Γ6r51, (22)

R9 = Γ7r51, (23)

where Γi (i = 1,2, · · ·) are some arbitrary functions of
q to be determined. In the determinations of f , g, φ ,
and q, as in the usual CK direct method [3, 4], we can
use some rules to simplify the calculations.

Rule 1. If f (x,y, t) has the form f = f0(x,y, t) +
g(x,y, t)Ω(q), we can take Ω ≡ 0.

Rule 2. If g(x,y, t) has the form g = g0(x,y, t)Ω(q),
we can take Ω ≡C = constant.

Rule 3. If q(x,y, t) is determined by an equation of
the form Ω(q) = q0(x,y, t), where Ω is an invertible
function, we can take Ω(q) = q.

Applying Rule 2 to (17) and supposing that
qyqx �= 0, Γ1 = −2a2, we have

g = −2a2qx, (24)
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where a2 is an arbitrary constant. Substituting (24) into
(18) and applying Rule 2, we have

Γ2 = −a1, f = −a1q2
x + qt + qxx

qx
, (25)

where a1 is an arbitrary constant. Substituting (24) and
(25) into (19) – (22), we have

Γ3 = 2Γ5 = −2a2, Γ4 = Γ6 = −a1. (26)

Substituting (24) and (25) into (23) and applying
Rule 2, we take Γ7 = −a0 (a0 is an arbitrary constant).
After some detailed calculations, (23) becomes

q3
x(qytt −qyt)+ q3

x(qxx + qt)xxy

+ 2qxyqx(qxt + qxxx)(qt + 2qxx)

−q2
x(qxxxqt)y + qxqtqxx(qt + 2qxx)y

−2q2
x(qxxqxt + qxxqxxx)y

+ q4
x(qxqxx)y(4a0a2 −a2

1)

+ 9q2
xx(qxqxxy −qxy)+ q2

xqxy(qxxt −qtt)

−q2
x(qxtqt)y + 2q2

xx(qxqyt −3qxyqt)

−q2
xqxxxxqxy + q2

t (qxqxxy −3qxxqxu) = 0.

(27)

Substituting (24) – (26) and the solutions of (27) into
(16), we obtain the similarity reduction equation of (1),
which reads

−1
2

a2
[
q3

xqy∂qq +
(
3qxyq2

x + qxqyqxx
)

∂q

+ (qxxqxy + qxqxxy)
]

· (φ ′ −a0 −a1φ −a2φ2) = 0.

(28)

Obviously, when the factor a2 in (28) is not zero, (28)
becomes the Riccati equation

φ ′ = a0 + a1φ + a2φ2. (29)

3. New Exact Solutions of the (2+1)-Dimensional
DLW System

Of course, it is very difficult to obtain the general
solution of (27). Fortunately, in this special case, one
of special solutions can be expressed

q = χ(x, t)+ ϕ(y), (30)

where χ ≡ χ(x,t), ϕ ≡ ϕ(y) are two arbitrary variable
separation functions of (x,t) and y. Based on (2), (4),

(24), (25), (30) and the following type solutions [15]
of (29):

(a) periodic solution:

φ = A + B tanC(q−D), (31)

(b) nonperiodic regular solution:

φ = A + B tanhC(q−D), (32)

(c) nonperiodic singular solution:

φ = A + BcothC(q−D), (33)

(d) rational function solution:

φ = Aq + B, (34)

where A, B, C, D are arbitrary constants, we ob-
tain the following new exact solutions to the (2+1)-
dimensional DLW system:

u1 = −χt + χxx

χx
+

2χx(1 + tan(χ + ϕ))
tan(χ + ϕ)−1

, (35)

v1 = −4χxϕy sec(χ + ϕ)2

(1− tan(χ + ϕ))2 , (36)

u2 = −χt + χxx

χx
+

8χx tanh(χ + ϕ)
1 + tanh(χ + ϕ)2 , (37)

v2 =
8χxϕysech(χ + ϕ)4

(1 + tanh(χ + ϕ)2)2 , (38)

u3 =
2χ2

x coth(χ + ϕ)− χt − χxx

χx
, (39)

v3 = −2χxϕycsch(χ + ϕ)2, (40)

u4 = −χt + χxx

χx
+

2a2χx

a2χ + a2ϕ + c0
, (41)

v4 = −2
a2

2χxϕy

(a2χ + a2ϕ + c0)2 (42)

with two arbitrary functions being χ(x, t) and ϕ(y),
where c0 is an arbitrary constant.

4. Dromion and Peakon Localized Excitations in
the DLW System

Due to the arbitrariness of the functions χ(x, t) and
ϕ(y) included in the above cases, the physical quan-
tities u and v may possess rich structures. For exam-
ple, when χ = ax + ct and ϕ = ky, all the solutions of
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Fig. 1. (a) A plot of a single dromion structure for the physi-
cal quantity V with the choice (44) and c = 1, t = 0.5. (b) A
structure of multi-dromions for the physical quantity V with
the choice (45) and c = 1, t = 0.2.

the above cases become simple travelling wave exci-
tations. Moreover, based on the derived solutions, we
may obtain rich localized structures such as dromions
and peakons. In the following discussion, we merely
analyze some special localized excitations of solution
v3 (40), namely

V = v1 = −2χxϕycsch(χ + ϕ)2. (43)

4.1. Dromion Localized Excitations

In (2+1)-dimensions, one of the most important
nonlinear solutions is the dromion excitation, which is
localized in all directions exponentially. For instance,
if we choose χ and ϕ as

χ = 1 + exp(x + ct), ϕ = 1 + exp(y), (44)

we obtain a simple dromion structure for the physical
quantity V (43) presented in Fig. 1a with the fixed pa-
rameters c = 1 and t = 0.5. If we choose χ and ϕ as

χ = 1 + sech(x + ct), ϕ = 1 + exp(y), (45)

then we obtain a structure of multi-dromions for the
physical quantity V presented in Fig. 1b with the fixed
parameters c = 1 and t = 0.2.
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Fig. 2. (a) A plot of a single peakon structure for the physical
quantity V with the choice (46) and c = 1, t = 0.8. (b) A
structure of multi-peakons for the physical quantity V with
the choice (47) and c = 1, t = 0.5.

4.2. Peakon Localized Excitations

According to the solution V (43), when the functions
χ and ϕ are selected to be

χ = 1+ tanh(−|x+ ct|), ϕ = 1+ tanh(y), (46)

we obtain a single peakon structure for the physical
quantity V presented in Fig. 2a with the fixed parame-
ters c = 1 and t = 0.8. If we choose χ and ϕ as

χ = 1+ sech(−|x+ ct|), ϕ = 1+ tanh(y), (47)

we obtain a structure of multi-peakons for the physical
quantity V presented in Fig. 2b with the fixed parame-
ters c = 1 and t = 0.5.

Furthermore, if we choose χ and ϕ as

χ = 1 + 2exp(−|x + ct + 2|)
+ 1.6exp(−|x + ct −1|),

ϕ = 1 + exp(−|y−1|),
(48)

and

χ =1+0.5exp(−|x + ct + 1|)+0.9exp(−|x + ct−1|)
+ 0.4exp(−|x + ct −3|)+ 0.8exp(−|x + ct−5|),
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Fig. 3. A structure of another type of multi-peakons for the
physical quantity V with (a) the choice (48) and (b) the
choice (49) and c = −2, t = 1.

ϕ = 1 + exp(−|y−1|), (49)

we obtain another type of multi-peakons excitation for
the physical quantity V presented in Fig. 3a and Fig. 3b
with the fixed parameters c = −2 and t = 1.

4.3. Interactions between Two Solitons

Generally, the interactions between solitons may
be regarded as completely elastic. For instance,
when χ(x, t) and ϕ(y) are considered to be

χ = 1 + 0.2sech(x + ct)+ 0.4sech(x− ct),
ϕ = 1 + sech(y),

(50)

and c = 1 in (43), we obtain the interactions between
two dromions. Figure 4 shows an evolutional profile
corresponding to the physical quantity V expressed
by (43). From Fig. 4 and through detailed analysis, we
find that the shapes, amplitudes and velocities of the
two dromions are completely conserved after their in-
teractions.

For some specific cases the interactions between
solitons are nonelastic. For example, if χ and ϕ are
chosen to be

χ = 1 + 1.5csch(−|x + ct−1|)
+ 0.4csch(−|x + 0.3ct−1|),

ϕ = 1 + tanh(−|y−1|),
(51)

and c = 1 in (43), we obtain another type of solitary
wave solution of (1) with nonelastic behaviour. The
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Fig. 4. The evolutional profile of two dromions for the solu-
tion V with the condition (50) at different times: (a) t = −9,
(b) t = −4, (c) t = 0, (d) t = 4, (e) t = 9.
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Fig. 5. The evolutional plot of nonelastic interactions of two
peakons for the solution V under the condition (51) at times:
(a) t = −15, (b) t = −10, (c) t = 0, (d) t = 6, (e) t = 14.

two peakons move in the same direction, but their ve-
locities are different. One peakon catches up with the
other and they will be in collision with each other.
From Fig. 5 we can see that the shapes and amplitudes
of two peakons are changed after collision. What’s
more, after their departure, the distance of the two
peakons becomes larger.

5. Summary and Discussion

Via conditional similarity reduction, we success-
fully transformed the (2+1)-dimensional DLW system
to a special situation, i. e. the Riccati equation (φ ′

=
a0 + a1φ + a2φ2), and some new exact solutions to
the DLW system were derived. Here the special situ-
ation means that in order to find exact excitations of
the NEE, we transformed the NEE to some special re-
duction equations we wanted in advance. For instance,
we tried to transform the (2+1)-dimensional DLW sys-
tem to the Riccati equation, then separated R3 and R5
into r31, r32 and r51, r52, respectively, and separated (5)
into three parts, such as (16). In the fourth part of the
paper, based on the solution v3 (40), we obtained some
special dromion and peakon excitations and discussed
the interactions between two solitons. Especially, the
phenomena showed in Fig. 5 of two peakons running
after each other and in collision with each other have
never been reported before.
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