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The homotopy analysis method (HAM) is used for solving the ordinary differential equations
which arise from problems of the calculus of variations. Some numerical results are given to demon-
strate the validity and applicability of the presented technique. The method is very effective and yields

very accurate results.
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1. Introduction

Problems that deal with finding minima or maxima
of a functional are called variational problems. Several
important variational problems such as the brachis-
tochrone problem, the problem of geodesics, and the
isoperimetric problem were first posed at the end of the
17th century (beginning in 1696). General methods for
solving variational problems were created by L. Euler
and J. Lagrange in the 18th century. Later on, the vari-
ational calculus became an independent mathematical
discipline with its own research methods.

The variational calculus problems can often be
transformed into differential equations. Unfortunately,
the only problems that can be solved exactly, seem
to be the classical problems of mathematical physics
whose solutions are already well known.

For solving variational problems, Tatari and De-
hghan [1] used the variational iteration method, Abdu-
laziz et al. [2] used the homotopy perturbation method,
Dehghan and Tatari [3] used the Adomian decom-
position method, and Saadatmandi and Dehghan [4]
used the Chebyshev finite difference method. The di-
rect method of Ritz and Galerkin is well covered in
many textbooks [5—7]. Chen and Hsiao [8] intro-
duced the Walsh series method to variational prob-
lems. See [9—12] for using Laguerre polynomials,
Legendre polynomials, Chebyshev series, and Legen-
dre wavelet approaches, respectively, to derive contin-
uous solutions for the variational problems. For other
methods, the interested reader might see Razzaghi and

Razzaghi [13] for the Fourier series direct method,
Razzaghi and Ordokhani [14] for rationalized Harr
functions, Hsiao [15] for the wavelet direct method,
and Glabisz [16] for the direct Walsh, wavelet packet
method.

In this paper the hamotopy analysis method (HAM)
is used for solving ordinary differential equations
which arise from problems of the calculus of varia-
tions. This approach is described briefly in Section 3
of this paper.

The HAM [17, 18] was first proposed by Liao in
1992. The HAM was further developed and improved
by Liao for nonlinear problems [19], for solving soli-
tary waves with discontinuity [20], for series solutions
of nano-boundary layer flows [21], for nonlinear equa-
tions [22], and many other subjects [23 —31].

The application of the HAM in mathematical prob-
lems is highly considered by scientists, because the
HAM provides us with a convenient way to control the
convergence of approximation series which is a fun-
damental qualitative difference in analysis between the
HAM and other methods.

The remaining structure of this article is organized
as follows: Section 2 is a brief basic for the calcu-
lus of the variation theory. Section 3 briefly reviews
the mathematical basis of the HAM used for this
study. Two illustrative examples are documented in
Section 4. These examples intuitively describe the abil-
ity and reliability of the method. A conclusion and fu-
ture directions for research are summarized in the last
section.
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2. Basics of the Calculus of Variations

The simplest form of a variational problem can be
considered as finding the extremum of the functional

vyl = /x: [F (x,y(x),y (x))]dx. (1)

To find the extreme value of v, the boundary conditions
are known in the form

y(x1) =B. 2

The necessary condition for the solution of problem (1)
is to satisfy the Euler-Lagrange equation

y(xo) = @,

d
Fy— - Fy =0 3)

with the boundary conditions (2). The Euler-Lagrange
equation is generally nonlinear. In this work we apply
the HAM for solving Euler-Lagrange equations which
arise from problems in the calculus of variations. It is
shown that this scheme is efficient for solving these
kinds of problems.

The boundary value problem (3) does not always
have a solution and, if a solution exists, it may not be
unique. Note that in many variational problems, from
the physical or geometrical meaning of the problem the
existence of a solution is obvious and is unique if the
solution of Euler’s equation satisfies the boundary con-
ditions and if it is the solution of the given variational
problem [7].

The general form of the variational problem (1) is

V[)’1a)’2a~~~,)’n] -
i @)
/ [F(x7y17y27~~'7yn7y/17y/27"'7y:1)]d~x
X0
with the given boundary conditions
yi(xo) = a1, y2(x0) =0, ...yu(x0)= 0w,
yi(x1) =Br, y2(x1) =2 -..ynlx1) =P

Here the necessary condition for the existence of the
extremum of the functional (4) is to satisfy the system
of second-order differential equations

d
Fyl'__

ol =0

i=1,2,....n,

with the above boundary conditions.

3. The Homotopy Analysis Method

To illustrate the basic concept of the HAM, we con-
sider the general nonlinear system

where N is a nonlinear operator, x denotes an inde-
pendent variable, and u(x) is an unknown function, re-
spectively. For simplicity, we ignore all boundary or
initial conditions, which can be treated in the similar
way. By means of generalizing the traditional homo-
topy method, Liao constructed the so-called zero-order
deformation equation

(1=p)L[¢(x; p) —uo(x)] = prH(x) N (x; p)], (5)

where p € [0, 1] is the embedding parameter, /i # 0 is
the convergence-control parameter [32], H(x) # O is
an auxiliary function, £ is an auxiliary linear operator,
up(x) is an initial guess of u(x), and @(x;p) is a un-
known function, respectively. It is important, that one
has great freedom to choose auxiliary parameters in the
HAM. Obviously, when p =0 and p = 1, it holds

(P(X;O) ZMO(x)v (P(X;l) :u(x),

respectively. Thus as p increases from O to 1, the so-
lution ¢ (x; p) varies from the initial guess uo(x) to the
solution u(x). Expanding ¢ (x; p) in a Taylor series with
respect to p, one has

+oo
O(x:p) =uo(x)+ Y um(x)p", ©6)
m=1

where

1.9"¢(x;p)
) = Sy

If the auxiliary linear operator, the initial guess, the
auxiliary parameter 5, and the auxiliary function are
properly chosen, the series (6) converges at p =1 to

u(x) = up(x) + f U (),

m=1

which must be one of the solutions of the original
nonlinear equation, as proved by Liao. The governing
equation can be deduced from the zero-order deforma-
tion equation. Defining the vector

7un(x)}7

iy = {uo(x),u1 (x),...
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differentiating (5) m times with respect to the embed-
ding parameter p, then setting p = 0, and finally divid-
ing by m!, we have the so-called mth-order deforma-
tion equation

ﬁ[um(x) — XmUm—1 (X)] = hH(x)Rm(ﬁmfl )» (7
where

L1 " IMe(p)]
Rm(um—l)_ (m—l)' apm—l p=0 ®)

and

0, m<1,
X = 1, m>1.

4. The HAM for Problems in the Calculus of
Variations

In this section, we present two examples to show
the efficiency and high accuracy of the present method
for finding the numerical solution of problems in the
calculus of variations.

4.1. Example 1

The brachistochrone problem is one of the earliest
problems posed in the calculus of variations. It was
proposed in 1696 by Johann Bernoulli to find the line
connecting two certain points, A and B, that do not
lie on a vectorial line and possess the property that
a moving particle slides down this line from A to B
in the shortest time. This problem was solved by Jo-
hann Bernoulli, Jacob Bernoulli, Leibnitz, Newton and
L’Hospital. It was shown that the solution of this prob-
lem is a cycloid.

Consider the brachistochrone problem [1,4,33]

1
. [
min v|y| = ——=| dx 9
=1, [ 725 ®
with the boundary conditions
y(0)=0, y(1)=-0.5. (10)

In this case the Euler-Lagrange equation is in the fol-
lowing form:

p__1+y?
2(y—1)
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or, equivalent,

2
" no Y 1
_ A —
y =Yy B )

Y

with the boundary conditions (10).

We assume that the solution of (11) can be expressed
by a set of base functions {1,x,x%,...} in the form

+o0
u(x) =Y di', (12)
i=0

where d; are coefficients to be determined. This pro-
vides us with the so-called rule of solution expres-
sion, i. e., the solution of (11) must be expressed in the
same form as (12) and the other expressions must be
avoided. Under the rule of solution expression denoted
by (12), it is obvious to choose the auxiliary linear op-
erator

99 (x; p)
Llo(x;p)] = o2
with the property
Llc1+cx] =0,

where ¢ and ¢, are constants. From (11), we define
the nonlinear operators

2(x; 2y
Mo(:p)} = aq’aiz’p) - a¢aiz’p)

1 /3p(x;p)\° 1
_E<T> 2

¢(x;p)

According to boundary conditions (10) and the
rule of solution expression (12), it is straightforward
that the initial approximations should be in the form
uo(x) = —1x, and we have the zero-order deformation
equation (5) with the initial conditions

9(0;p) =0, ¢(1;p)=-0.5.

From (8) and (11), we have

m—1
Rm(ﬂ)m—l) = ugq—l - Z uiugq—lfi
i=0

1] 1
—3 P Uilly, 1 — 5(1 — Xm),
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where the prime denotes differentiation with respect to
the similarity variable x. Now, the solution of the mth-
order deformation equation (7) for m > 1 becomes

Um (X) = XmUm—1 (X) + h»c_l [H(X)Rm(ﬁmfl )]
+c1 +cx,

where the constants ¢; are determined by the initial
condition
um(0) =0, uy,(1)=0.

According to the rule of solution expression de-
noted by (12) and from (7), the auxiliary function H(x)
should be in the form H(x) = —x*, where k is an in-
teger. It is found that, when k < —1, the solution of
the high-order deformation equation (7) contains the
terms In(x) or & (s > 1), which incidentally disobey
the rule of solution expression (12). When k > 1, the
base x always disappears in the solution expression of
the high-order deformation equation (7), so that the co-
efficient of the term x cannot be modified even if the or-
der of approximation tends to infinity. Thus, we have to
set k = 0, which uniquely determines the correspond-
ing auxiliary function H(x) = —1.

Accordingly, the Nth-order approximate series solu-
tion Yy (x) = YN, u;(x) can be obtained as follows:

Yi(x) = (— % - 15—6h>x+ 15—6hx2,
Ya(x) = (— % + 1%521# - %h)er (— é—ih% gh)xz
_45_8h2x3’

Ys(x) = %h%r(—%—kg—?)hz—%iﬁ—%h
—Mzﬁhz(lm% —1664) )«
+[—h(—%h2+é—ih> +%h—;—;h2}x2
+{— ;—4h2—h<%h— %h2>}x3+%h3x“.

It is obvious from Fig. 1 that to adjust and control
the convergence region of solution series, the auxiliary
parameter /i should be chosen as

h=0.7.

The approximate series solution with 10 terms and 72 =
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Fig. 1. h-Curve of the 10th-order approximation of Exam-
ple 1; solid line, #/(0); symbols, «” (0).
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Fig. 2. Residual of the 10th-order approximation of Exam-
ple 1.

0.7 is as follows:

ﬁ Um(x) = 0.0005263196634 — 0.7872055314x

" +0.4051047674x> — 0.2123464565x>
+0.1775735068x* — 0.1606474448x>
+0.1407462143x° — 0.1057503008x
+0.06158360841x% — 0.02518533930x”
+0.006330243171x'°
—0.0007295855532x' L,
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The approximate solution Y'!%_ u,, (x) is of remarkable
accuracy. The residual is shown in Figure 2.

4.2. Example 2

Consider the following variational problem [1,4,7]

2(x
minVMZ/Olil—i_y()dx

Y2 (%)
with the boundary conditions
y(0)=0, y(1)=05. (13)

In this case the Euler-Lagrange equation is in the form

y// _ y//yz _ yy/z -0 (14)

with the boundary conditions (13). We assume that the
solution of (14) can be expressed by a set of base func-
tions {x,x*,x°,...} in the form

+oo .
X) — ZdiXZH_lv
i=0

where d; are coefficients to be determined. In this ex-
ample, the linear operator £ is chosen as in Example 1.
From (14), we define the nonlinear operators

(15)

X, ZX'
Mol p)) = 200) L) 2,
) 2
—o(x:p) (L’gj;m) .

According to boundary conditions (13) and the rule of
solution expression (15), it is straightforward that the
initial approximations should be in the form uy(x) =
1x, and we have the zero-order deformation equa-

tzion (5) with the initial conditions
¢(0:p) =0, ¢(1:p)=0.5.
From (8) and (14), we have
m—1—i
R(Mml ml-i-Z"Zu]um],]
m=1 m— 1 i

_Zul Z uumlt]’

i=0

where the prime denotes differentiation with respect to
the similarity variable x. Now, the solution of the mth-
order deformation equation (7) for m > 1 becomes

U (X) = Xt — 1 (X) + AL H ()R (lln—1)] + 1+ C2x,

o i
© P N
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Fig. 3. h-Curve of the 10th-order approximation of Exam-
ple 2; solid line, u”’(0); symbols, «’(0).

where the constants ¢; are determined by the initial
condition

um(0) =0, uy,(1)=0.
As in Example 1, in this example, we have

H(x)=1.

Accordingly, the Nth-order approximate series solu-
tion Yy (x) = Z?Lo u;(x) can be obtained as follows:

k)

1 89
Y (x) = ( + —3840

3 2 1 3 1 2.5
+( 28" 24h>x 3540
Y3(x) =
1 89 I )
89 ga L 4984
[ + o+ 16h+215040h (5563 + 498 )]x

2437 3 1
3y —— - —h)——h|x
+[ 64 < 92160 128 ) 16 ]x

1, 53 | S

+ [1920h +h(92160h +3840h>}c
1 3.7
645120~

It is obvious from Fig. 3 that to adjust and control
the convergence region of solution series, the auxiliary
parameter /i should be chosen as

h=—



S. Abbasbandy and A. Shirzadi - The Series Solution of Problems in the Calculus of Variations 35

The approximate series solution with 10 terms and /i = —1 is as follows:
IZO, ) 240566555447494721X+ 256544305776974273 e 56161532713337 JE
M =
— " 499918215976058880  13813529651970048000 261180182495232000
58525263353783 7 9648392773 o 416051 L
49363054491598848000 2531438691876864000 51662014119936000
575249 REN 241 |15
49363054491598848000 16454351497199616000
1 17 1 19

* 159842271687081984000" *

The approximate solution ¥’ u,,(x) is of remark-
able accuracy. The residual is shown in Figure 4.

5. Conclusions

The ordinary differential equations which arise from
problems of the calculus of variations usually are non-
linear and are often difficult to analytically estimate. In
the present paper the homotopy analysis method was
applied to solve such problems. From the residual it
was obvious that our results are in good agreement
with the exact solution. In this regard the homotopy
analysis method is found to be a very useful analytical
technique to get highly accurate and purely analytic so-
lutions of such kind of problems.
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