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By means of an extended tanh method, a new type of variable separation solutions with two arbi-
trary lower-dimensional functions of the (2+1)-dimensional nonlinear Schrödinger (NLS) equation is
derived. Based on the derived variable separation excitation, some special types of localized solutions
such as a curved soliton, a straight-line soliton and a periodic soliton are constructed by choosing ap-
propriate functions. In addition, one dromion changes its shape during the collision with a folded
solitary wave.
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1. Introduction

Solitons appear in almost all branches of physics,
such as hydrodynamics, plasma physics, nonlinear
optics, condensed matter physics, low temperature
physics, particle physics, nuclear physics, biophysics
and astrophysics. The study of solitons is a system-
atic research on nonlinear phenomena with a consis-
tent leading principle. While the soliton concept gives
a new point of view on nature, there are many problems
to be studied. The soliton concept has been developed
with many approaches such as the Bäcklund transfor-
mation [1], the Darboux transformation [2], the Cole-
Hopf transformation [3], various tanh methods [4],
various Jacobi elliptic function methods [5, 6], multi-
linear variable separation approaches (MLVSA) [7, 8],
the Painlevé method [9], the homogeneous balance
method [10], and the similarity reduction method [11].
Among them, the extended tanh method (ETM) is a
useful approach to obtain variable separation solutions
for (2+1)-dimensional systems.

For a given nonlinear evolution equation

Λ(U,Ut ,Uxi ,Uxix j , . . .) = 0 (1)

with independent variables ς = (t,x1,x2, . . . ,xm) and
the dependent variable U , we seek its solutions in the
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form

U =
n

∑
i=0

ai(ς)φ i(ω(ς)), ω(ς) =
m

∑
i=0

gixi. (2)

Using relation (2), one obtains many explicit and exact
travelling wave solutions of nonlinear evolution equa-
tions. The main idea of the approach is that φ(ω(ς))
is assumed to be a solution of some equations such
as the quartic nonlinear Klein-Gordon equation φ ′2 =
α4φ4 + α2φ2 + α0, or a solution of the general elliptic

equation φ ′2 =
4
∑

i=0
αiφ i, where αi, i ∈ (1,2,3,4) are all

arbitrary constants.
In the ETM [12 – 15], φ(ω(ς)) is assumed to be a

solution of the equation

φ ′ = α0 + φ2. (3)

Different from (2) is that ω(ς) is not a simple linear
combination of the variables xi, but is assumed to be
an arbitrary function with the variable separated form

ω(ς) = ς1(x1, t)+ ς2(x2, t)+ ς3(x3, t)+ . . . , (4)

where the ςi are arbitrary functions of the indicated
variables.

To determine U explicitly, one may take the follow-
ing steps: First, similar to the usual tanh approach, one
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determines n by balancing the highest-order nonlinear
terms and the highest-order partial derivative terms in
the given nonlinear evolution equation. Second, sub-
stituting (2), (3) and (4) into the given equation and
collecting coefficients of polynomials of φ , then elim-
inating each coefficient allows to derive a set of par-
tial differential equations for the ai (i = 0,1, . . . ,n)
and ω . Third, solving the system of partial differen-
tial equations one obtains the ai and ω . Finally, as (3)
with α0 = 0 possesses the solution

φ = − 1
ω

, (5)

substituting ai,ω and (5) into (2), one can obtain the
solution of the equation in concern.

In the present paper, with the help of the ETM
we get variable separated solutions for the (2+1)-
dimensional nonlinear Schrödinger (NLS) equation.
Some special types of soliton solutions and periodic
soliton solutions are constructed by choosing appropri-
ate functions in the general variable separation solution
of this system. In addition, through fixing the parame-
ters further, we manage to obtain a new type of evo-
lutionary and interaction properties for dromion and
folded solitary waves. These may change their shapes
during the collision.

2. ETM and Variable Separation Solution for the
(2+1)-Dimensional NLS Equation

The integrable (2+1)-dimensional NLS equa-
tion [16] is

Uxx =UQx− iUt , U∗
xx =U∗Qx + iU∗

t , Qy =UU∗. (6)

Here, U is a complex function of the real variables x,
y and t; i2 = −1. In the case x = y, this equation is
reduced to

iUt +Uxx + 2|U |2U = 0, (7)

which is the celebrated NLS equation. The NLS equa-
tion has been widely used to study the dynamics of
small but finite amplitude nonlinearly interacting per-
turbations in many-body physics, in nonlinear optics
and optical communications, in nonlinear plasmas and
complex geophysical flows, as well as in intense laser-
plasma interactions and nonlinear quantum electrody-
namics. For example, the NLS equation with a cubic
nonlinearity is a suitable model for the nonlinear pulse
propagation in Kerr media, photonics and optical fibre

communications, as well as in unmagnetized plasmas.
Equation (6) is the generalization of the nonisotropic
Lax integrable (1+1)-dimensional NLS equation. And
it may also be obtained from the symmetrical restric-
tion of the Kadomtsev-Petviashvili (KP) equation [16].
Moreover, (6) can be transformed to Hirota-type equa-
tions:

(D2
x + iDt)G ·F −Q0xGF = 0,

DxDyF ·F + GG∗ = 0,
(8)

with the transformation U = G/F , Q = −2(lnF)x +
Q0(x, t). Here we have used Hirota’s D-operators:

Dm
x · · ·Dn

yF ·G = (∂x −∂′x)m · · ·(∂y −∂′y)n

· F(x, · · · ,y)G(x, · · · ,y)|x′=x,y′=y.
(9)

Q0 ≡ Q0(x, t) is an arbitrary function of x, t. Us-
ing a special Bäcklund transformation and the
MLVSA [17, 18] one finds some special types of
excitations such as dromions, breathers, instantons,
ring-type solitons, fractal-dromions, fractal-lumps,
peakons, compactons, and folded waves. It is worth
noting that here we solve the NLS equation simply us-
ing the ETM instead of the MLVSA, and then get some
novel excitations. In particular, we are interested in a
concrete nonelastic interaction between a dromion and
a folded solitary wave.

Along with the ETM, we assume that the system (6)
possesses solutions of the form

U(x,y, t) =
m

∑
j=0

a jφ j(ω)exp[i(r + s)],

Q(x,y, t) =
n

∑
k=0

bkφ k(ω),
(10)

where the real function φ satisfies

φ ′ = φ2, (11)

r ≡ r(x, t) is a function of {x, t}, s ≡ s(y,t) is a func-
tion of {y, t}, and ω ≡ ω(x,y, t), a j ≡ a j(x,y, t) ( j =
0,1, . . . , l), bk ≡ bk(x,y, t) (k = 0,1, . . . ,m) are func-
tions being determined later. By balancing the highest-
order derivative terms with the nonlinear terms in sys-
tem (6), we obtain m = n = 1. Then we have

U(x,y, t) = a0(x,y, t)exp[i(r + s)]
+ a1(x,y, t)φ(ω)exp[i(r + s)],

Q(x,y, t) = b0(x,y, t)+ b1(x,y, t)φ(ω).
(12)
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Fig. 1. The curve-type solitary wave solution for: (a) |U | at t = 0 determined by (25) with (31); (b) the field Q at t = 0
determined by (26) with (31).

Inserting (11) and (12) into (6), selecting the vari-
able separation ansatz

ω = p(x,t)+ q(y,t), (13)

and eliminating all the coefficients of the polynomials
in φ , one gets the following set of partial differential
equations:

2a1 pxrx + a1pt + a1qt = 0, (14)

2a1xrx + a1t + a1rxx = 0, (15)

a0t + 2rxa0x + rxxa0 = 0, (16)

2a1 p2
x −a1b1 px = 0, (17)

a1 pxx + 2a1xpx −a0b1 px −a1b1x = 0, (18)

−a1rt −a1r2
x +a1xx−a1b0x−a0b1x−sta1 = 0, (19)

a0b0x − r2
xa0 + a0xx − rta0 − sta0 = 0, (20)

b1qy −a2
1 = 0, (21)

b1y −2a1a0 = 0, (22)

b0y −a2
0 = 0. (23)

Now, we are left to solve (14) to (23). By careful anal-
ysis and calculation, we obtain

a0 = 0, a1 =
√

2pxqy, b1 = 2px,

b0 =
∫ x

0

(
2pxxx px − p2

xx −4p2
xrt −4p2

xr2
x

4p2
x

)
dx + c2,

p = p(x, t), q = Y (y)+ T (t), s = s(y),

r =
∫ x

0

(
− pt + qt

2px

)
dx + c1,

(24)

where p ≡ p(x, t) and Y ≡ Y (y) are arbitrary functions
of the indicated variables, and c1 and c2 are integration
constants. Consequently, the exact variable separation
solutions of the NLS equation (6) have the forms

U =

√
2pxqy

p + q
exp

[
i
(∫ x

0

(
− pt + qt

2px

)
dx

+s(y)+ c1

)]
,

(25)
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Fig. 2. The straight-line-type solitary wave solution with head for: (a) |U | at t = 0 determined by (25) with (32); (b) the field Q
at t = 0 determined by (26) with (32).

Q =
∫ x

0

(
2pxxx px − p2

xx −4p2
xrt −4p2

xr2
x

4p2
x

)
dx

+
2px

p + q
+ c2.

(26)

Obviously, one special choice for the allowed con-
ditions is

ω = p(x,t)+ q(y) = X(x)+ T (t)+Y(y), (27)

where X ≡X(x), T ≡ T (t), and Y ≡Y (y) are three arbi-
trary variable separation functions of x, t, and y, respec-
tively. Under this special condition the time and space
variables are separated completely. Then we have

U =

√
2XxYy

X +Y + T
exp

[
i
(∫ x

0

(
− Tt

2Xx

)
dx + s+ c1

)]
,

(28)

Q =
∫ x

0

(
2XxxxXx −X2

xx −4X2
x rt −4X2

x r2
x

4X2
x

)
dx

+
2Xx

X +Y + T
+ c2.

(29)

It is worth emphasizing here that

UU∗ =
2pxqy

(p + q)2 , (30)

which just shares the form of the so-called universal
quantity. Therefore, similar to the ways in previous lit-
erature like [15], starting with the results (25) and (26),
the (2+1)-dimensional NLS equation admits various
localized excitations and interaction properties, such as
curved-line solitons, ring solitons, dromions, peakons,
compactons, foldons, chaotic solitons.

3. Special New Localized Excitations

In the following, we focus our attention on some
new and interesting explicit solutions of the physical
fields U and Q in the (2+1)-dimensional NLS equation,
and list them as follows. To our knowledge, these new
soliton structures of the NLS equation have not been
reported previously in the literature [17, 18].

In Figs. 1 and 2, two special types of solitary waves
are plotted for the fields U and Q determined by (25)
and (26) with the chosen functions

p = exp(x + ωt −8)−1,

q = exp(−0.8y3), c2 = 0
(31)

and

p = cosh(x + ωt −9)−1,

q = 0.03 + y2, c2 = 0.
(32)
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Fig. 3. Periodic solitary wave solution for: (a) |U | at t = 0 determined by (25) with (33); (b) the field Q at t = 0 determined
by (26) with (33).

As we know, a curved-line soliton of an integrable
model is defined as a solution which is finite on a
curved-line and decays exponentially away from the
curve. A straight-line soliton of an integrable model
is defined as a localized excitation possessing nonzero
values for a suitable physical quantity, say energy, on
a full straight-line and decaying exponentially away
from the line. Thus straight-line solitons are special
cases of curved ones.

Figure 3 shows another typical periodic solitary
wave for the fields U and Q determined by (25)
and (26) with the function choices

p = exp(−x + ωt + 2)−1,

q = exp[0.7sin(y)], c2 = 0.
(33)

4. Interaction between a Special Dromion and a
Folded Solitary Wave

As a matter of fact, if px is taken as (1+1)-
dimensional localized multi-value function, say a loop

soliton,

px ≡
M

∑
j=1

h j(ξ − v jt),

x = ξ +
M

∑
j=1

r j(κ jt)g j(ξ − v jt),
(34)

and the function qy is given in a similar way,

qy =
M

∑
j=1

Q j(η), y = η + Ω(η), (35)

where the v j and κ j are all arbitrary constants and
the h j,g j are all localized functions with the properties

h j(±∞) = H±, g j(±∞) = G± = constant,

r j(±∞) = R± = constant,
(36)

then we have

p =
∫ ξ

pxxξ dξ , q =
∫ η

qyyηdη . (37)
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Fig. 4. Nonelastic interaction between a special dromion and
a folded solitary wave for |U | with conditions (39) at times:
(a) t = −30; (b) t = 0; (c) t = 30.

Substituting (34) – (37) into (30), we can get some in-
teresting coherent excitations for |U |. Judged from ex-
pression (34), ξ may be a multi-value function in cer-
tain regions of x by choosing the functions r j and g j
suitably. Therefore, the function px may be a multi-
valued function of x in these regions, though it is a
single-valued function of ξ . Besides, px is an interact-
ing travelling solution of M localized excitations due
to the property ξ |x→∞ → x → ∞. In this case, the phase
factors ∆∓

j read

∆ j(±) = ∑
i< j

G∓
i R∓

i + ∑
i> j

G±
i R±

i . (38)

For instance, Figs. 4a – c show the interaction be-
tween a dromion and a folded solitary wave for the
field |U | with the choices

px = 0.8sech(ξ )2 + 0.1sech(ξ −0.25t)2,

p =
∫ ξ

pxxξ dξ =
(
−0.15− tanh(t)

6

− tanh(t)
12

sech(ξ −0.25t)2
)

tanh(ξ −0.25t)

+
(
− 8

15
−2tanh(t)− 2

3
sech(ξ )2

)
tanh(ξ )

+8(α −1)−3α(α + 1) ln
α + β
β + 1

(2tanh(t)+ 0.25)

−2[(−2α + 1 + α2)(β + 1)(α + β )]−1[2tanh(t)(α3

+5α2β + 6α2 + 2αβ + α + β )+ 0.25α(α2β + α2

+2αβ + 6α + 5β + 1)]+ 8,

α ≡ exp(0.5t), β ≡ exp(2ξ ),
x = ξ −2.5tanh(ξ )−2.5tanh(t) tanh(ξ −0.5t),

qy = sech(η)2,

q =
∫ η

qyyη dη =
14
15

tanh(η)− 1
3

tanh(η)sech(η)2,

y = η −0.1tanh(η). (39)

From these evolution profiles (Fig. 4) and the corre-
sponding sectional view (Fig. 5), obviously one can
observe that the interaction is nonelastic since the
shapes of the interacting solitons are not preserved.
There exist two multi-valued folded solitary waves af-
ter their collision, which is a novel phenomenon differ-
ent from the reported cases in previous literature. The
total phase shift for the static folded solitary wave in
this case is

∆+
1 −∆−

1 = G2(−∞)R2(−∞)−G2(+∞)R2(+∞)

= 0.
(40)

5. Summary

By means of the ETM, the (2+1)-dimensional NLS
equation was successfully solved. Thanks to the ar-
bitrary functions in its solutions, we were allowed to
choose them as some combinations of some exponen-
tial functions with some constant parameters. We then
found a rich variety of localized excitations, such as
straight-line-type solitons, curve-type solitons and pe-
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riodic solitary waves. In addition, a dromion changed
its shape after the collision with a folded solitary wave.

Because of the arbitrary functions in the solution
formula of these higher-dimensional integrable mod-
els, the interactions among the localized excitations are
very stimulating and are far from being an exhausted
area of research. The interactions among the (2+1)-
dimensional localized excitations of the NLS equation
may be completely elastic or nonelastic. The interac-
tions among the localized excitations may or may not
induce phase shifts. For instance, one can get dromion

reflection for |U | with the following choices:

p =
e0 + e1χ
e2 + e3χ

,

χ = exp(k1x + ω1t)+ exp(k2x + ω2t),
q = exp(K1y)+ exp(K2y), c2 = 0,

(41)

where

e0 = e3 = 2.5, e1 = e2 = k1 = −K1 = 1,

ω2 = ω1 = 1, k2 = −K2 =
2
5
.

(42)
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Fig. 6. The evolution of the single resonant dromion driven
by four line ghost solitons shown by |U | with (32), (33)
and (34) at times: (a) t =−30; (b) t =−3; (c) t = 0; (d) t = 2;
(e) t = 30.

In this case, a dromion is reflected by an invisible ghost
wall which is caused by a ghost-line soliton. The res-
onant dromion’s shape will change after its collision
with the wall. From Fig. 6, one can see that before a
special ‘interacting’ time, the dromion moves in one
direction. After the ‘interacting’ time, the dromion pro-

longs oppositely. This phenomenon resembles a mov-
ing ball reflected by a wall. Being invisible, we call it
a ‘ghost wall’, which is caused by a ghost-line soliton.
This novel interaction phenomenon is quite universal
in high dimensions [19]. More about the new interac-
tions will be studied later.
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