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The results of some new research on a new class of triangular functions that unite the charac-
teristics of the classical triangular functions are presented. Taking into consideration the great role
played by triangular functions in geometry and physics, it is possible to expect that the new theory
of the triangular functions will bring new results and interpretations in mathematics, biology, physics
and cosmology. New traveling wave solutions of some nonlinear partial differential equations are
obtained in a unified way. The main idea of this method is to express the solutions of these equa-
tions as a polynomial in the solution of the Riccati equation that satisfy the symmetrical triangular
Fibonacci functions. We apply this method to the combined Korteweg-de Vries (KdV) and modified
KdV (mKdV) equations, the generalized Kawahara equation, Ito’s 5th-order mKdV equation and
Ito’s 7th-order mKdV equation.
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1. Introduction

It is well known that nonlinear partial differential
equations (NLPDEs) are widely used to describe com-
plex phenomena in various fields of sciences, particu-
larly in physics. The exact traveling wave solution of
NLPDEs is one of the fundamental objects of study
in mathematical physics. To find mathematical models
for the phenomena, the investigation of exact solutions
of NLPDEs will help to have a better understanding
of these physical phenomena. In recent years, various
powerful methods have been developed to construct
exact solitary wave solutions and periodic wave so-
lutions of the nonlinear evolution equations (NLEEs),
such as: the tanh function method [1, 2], the extended
tanh function method [3], the Jacobi elliptic function
expansion method [4], the F-expansion method [5],
the generalized Jacobi elliptic function method [6] and
other methods [7 – 11]. The symbolic software pro-
grams have been presented [12, 13] to find exact so-
lutions of NLPDEs in terms of hyperbolic and elliptic
functions.

In [14], Conte and Musette presented an indi-
rect method to seek some solitary wave solutions of
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NLPDEs that can be expressed as a polynomial in
two elementary functions which satisfy a projective
Riccati system [15]. By use of this method, some
solitary wave solutions of many NLPDEs have been
obtained [14, 16]. Recently, Yan [17] and Chen and
Li [18] further developed the Conte and Musette
method by introducing a more general projective Ric-
cati equation and obtained many exact traveling wave
solutions of some NLPDEs.

The finding of a new mathematical algorithm to
construct exact solutions of NLPDEs is important
and might have significant impact on future research.
In [19], we constructed symmetrical hyperbolic Fi-
bonacci functions and found new solutions of the Ric-
cati equation by using these functions. Also, we de-
vised an algorithm called Fibonacci Riccati method to
obtain new exact solutions of NLPDEs. Here, we in-
troduce new triangular functions. We call them sym-
metrical triangular Fibonacci functions and use them
to obtain new solutions of the Riccati equation.

The present paper is organized as follows. In the
next section, we introduce the symmetrical triangular
Fibonacci functions and their properties. In Section 3,
we introduce the triangular Fibonacci Riccati (TFR)
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method to NLPDEs. In Section 4, we apply the TFR
method to NLPDEs such as the combined Korteweg-de
Vries (KdV) and modified KdV (mKdV) equation, the
generalized Kawahara equation, Ito’s 5th-order mKdV
equation and Ito’s 7th-order mKdV equation. Finally,
we give some features and comments.

2. Definition and Properties of the Symmetrical
Triangular Fibonacci Functions

We know that the symmetrical hyperbolic Fibonacci
sine (sFs) function, the symmetrical hyperbolic Fi-
bonacci cosine (cFs) function and the symmetrical
hyperbolic Fibonacci tangent (tFs) function are de-
fined [20] as

sFs(x) =
αx −α−x

√
5

, cFs(x) =
αx + α−x

√
5

,

tFs(x) =
αx −α−x

αx + α−x .

(1)

They are introduced to consider so-called symmetri-
cal representations of the hyperbolic Fibonacci func-
tions and they may present a certain interest for mod-
ern theoretical physics taking into consideration the
great role played by the Golden Section, Golden Pro-
portion, Golden Ratio, Golden Mean in modern phys-
ical research [20]. The symmetrical Fibonacci hy-
perbolic cotangent (cotFs) function is cotFs(x) =

1
tFs(x) , the symmetrical hyperbolic Fibonacci secant

(secFs) function is secFs(x) = 1
cFs(x) , and the symmet-

rical hyperbolic Fibonacci cosecant (cscFs) function is
cscFs(x) = 1

sFs(x) . These functions satisfy the follow-
ing relations [20]:

cFs2(x)− sFs2(x) =
4
5
, 1− tFs2(x) =

4
5

secFs2(x),

cotFs2(x)−1 =
4
5

cscFs2(x). (2)

Also, from the above definitions, we give the deriva-
tive formulas of the symmetrical hyperbolic Fibonacci
functions as follows:

dsFs(x)
dx

= cFs(x) lnα,
dcFs(x)

dx
= sFs(x) lnα,

dtFs(x)
dx

=
4
5

secFs2(x) lnα. (3)

The above symmetrical hyperbolic Fibonacci functions
are connected with the classical hyperbolic functions

by the simple correlations

sFs(x) =
2√
5

sinh(x lnα), cFs(x) =
2√
5

cosh(x lnα),

tFs(x) = tanh(x ln α). (4)

From the above definitions and properties of the sym-
metrical hyperbolic Fibonacci functions we can de-
fine the symmetrical triangular Fibonacci sine (sTFs)
function, the symmetrical triangular Fibonacci cosine
(cTFs) function, and the symmetrical triangular Fi-
bonacci tangent (tTFs) function as

sTFs(x) =
α ix −α−ix

i
√

5
, cTFs(x) =

α ix + α−ix

i
√

5
,

tTFs(x) =
sTFs(x)
cTFs(x)

. (5)

The symmetrical triangular Fibonacci cotangent
(cotTFs) function is cotTFs(x) = 1

tTFs(x) , the symmet-
rical triangular Fibonacci secant (secTFs) function is
secTFs(x) = 1

cTFs(x) , and the symmetrical triangular
Fibonacci cosecant (cscTFs) function is cscTFs(x) =

1
sTFs(x) . These functions satisfy the following rela-
tions [20]:

cTFs2(x)+ sTFs2(x) =
4
5
,

1 + tTFs2(x) =
4
5

secTFs2(x),

cotTFs2(x)+ 1 =
4
5

cscTFs2(x).

(6)

Also, from the above definitions, we give the deriva-
tive formulas of the symmetrical triangular Fibonacci
functions as follows:

dsTFs(x)
dx

= cTFs(x) ln α,

dcTFs(x)
dx

= −sTFs(x) lnα,

dtTFs(x)
dx

=
4
5

secTFs2(x) ln α.

(7)

The above symmetrical triangular Fibonacci functions
are connected with the classical triangular functions by
the simple correlations

sTFs(x) =
2√
5

sin(x lnα),

cTFs(x) =
2√
5

cos(x ln α),

tTFs(x) = tan(x ln α).

(8)
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3. The Triangular Fibonacci Riccati Method

The main idea of this method is to express the solu-
tion of an NLPDE as a polynomial in the solution of
the Riccati equation that satisfies the symmetrical tri-
angular Fibonacci functions. Consider a given NLPDE

H(u,ut ,ux,utt ,utx,uxx, . . .) = 0. (9)

The TFR method for solving (9) proceeds in the fol-
lowing four steps:

Step 1. We seek the traveling wave solution of (9)
in the form

u(x, t) = u(ξ ), ξ = k(x−ωt), (10)

where k and ω are the wave number and wave velocity,
respectively. Substituting (10) into (9) yields the ordi-
nary differential equation (ODE)

H̃(u,u′,u′′,u′′′, . . .) = 0, u′ =
du
dξ

, . . . etc., (11)

where H̃ is a polynomial of u and its various deriva-
tives. If H̃ is not a polynomial of u and its various
derivatives, then we may use new variables v = v(ξ )
which make H̃ to become a polynomial of v and its
various derivatives.

Step 2. Suppose that u(ξ ) can be expressed by a
finite power series of F(ξ ):

u(ξ ) =
n

∑
i=0

ai Fi(ξ ), an �= 0, (12)

where n is the highest degree of the series, which can
be determined by balancing the highest derivative term
(or terms) with the nonlinear term (or terms) in (11),
and ai are some parameters to be determined. The func-
tion F(ξ ) satisfies the Riccati equation

F ′(ξ ) = A + BF2(ξ ), ′ ≡ d
dξ

, (13)

where A and B are constants.

Step 3. Substituting (12) with (13) into the
ODE (11), the left-hand side of (11) can be converted
into a polynomial in F(ξ ). Setting each coefficient of
the polynomial to zero yields a system of algebraic
equations for a0,a1,a2, . . . ,an,k and ω .

Step 4. Solving the system obtained in step 3,
a0,a1,a2, . . . ,an,k and ω can be expressed by A and B.

Substituting these results into (12), a general formula
of traveling wave solutions of (9) can be obtained.
A and B in ODE (13) have to be choosen properly such
that the corresponding solution F(ξ ) of it is one of the
symmetrical triangular Fibonacci functions given bel-
low.

Case 1. If A = lnα and B = lnα , then (13) pos-
sesses the solution tTFs(ξ ).

Case 2. If A = lnα and B = − lnα , then (13) pos-
sesses the solution cotTFs(ξ ).

Case 3. If A = lnα
2 and B = lnα

2 , then (13) pos-
sesses the solutions tTFs(ξ )± secTFs(ξ ), tTFs(ξ )

1±secTFs(ξ ) ,

cscTFs(ξ )− cotTFs(ξ ).

Case 4. If A = − lnα
2 and B = − lnα

2 , then
(13) possesses the solutions cotTFs(ξ )± cscTFs(ξ ),

cotTFs(ξ )
1±cscTFs(ξ ) , secTFs(ξ )− tTFs(ξ ).

Case 5. If A = lnα and B = 4lnα , then (13) pos-
sesses the solution tTFs(ξ )

1−tTFs2(ξ )
.

Case 6. If A = − lnα and B = −4lnα , then (13)
possesses the solution cotTFs(ξ )

1−cotTFs2(ξ )
.

Now, we can apply the TFR method to some
NLPDEs.

4. Applications

4.1. The Combined KdV and mKdV Equation

We consider the combined KdV and mKdV equa-
tion

ut + 6auux + 6bu2ux + cuxxx = 0 (14)

with the constants A, b and c. Equation (14) is widely
used in various fields such as solid-state physics,
plasma physics, fluid physics and quantum field the-
ory [21, 22]. It is clear that (14) is a combination of the
KdV and mKdV equations. As a result the combined
KdV and mKdV equation is also integrable, which
means that it has a Bäcklund transformation, a bilinear
form, a Lax pair and an infinite number of conserva-
tion laws etc. The periodic wave solutions of (14) have
been studied in [23].

Now, we can apply the TFR method to the com-
bined KdV and mKdV equation (14). Substituting (10)
into (14) yields

−ωu′+ 6auu′+ 6bu2u′ + ck2u′′′ = 0. (15)
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Balancing u′′′ with u2u′ gives n = 1. Therefore, the so-
lution of (15) can be expressed as

u = a0 + a1F(ξ ). (16)

With the help of the symbolic software Maple, substi-
tuting (16) into (15) yields a set of algebraic equations
with respect to Fi(ξ ). We set the coefficients of Fi(ξ )
(i = 0,1,2,3,4) in the obtained equation to zero. We
further obtain a system of algebraic equations. Solving
this set of equations for a0, a1, k and ω with the aid of
Maple, we find

a0 = − a
2b

, a1 = ±k B

√−c
b

,

ω = 2ck2BA− 3a2

2b
,

(17)

where k is an arbitrary constant. Thus, we obtain the
general formulae of the solutions of the combined KdV
and mKdV equation (14):

u = − a
2b

± k B

√−c
b

F(ξ ),

ξ = k
(

x−
(

2ck2BA− 3a2

2b

)
t
)

, bc < 0.

(18)

Selecting some special values of A, B and the corre-
sponding function F(ξ ), we have the following travel-
ing wave solutions of (14):

u1 = − a
2b

± k lnα
√−c

b
tTFs(ξ ),

ξ = k
(

x−
(

2ck2 lnα2 − 3a2

2b

)
t
)

, bc < 0,

(19)

u2 = − a
2b

∓ k lnα
√−c

b
cotTFs(ξ ),

ξ = k
(

x +
(

2ck2 lnα2 − 3a2

2b

)
t
)

, bc < 0,

(20)

u3 = − a
2b

± k lnα
2

√−c
b

[tTFs(ξ )± secTFs(ξ )],

u4 = − a
2b

± k lnα
2

√−c
b

[cscTFs(ξ )− cotTFs(ξ )],

u5 = − a
2b

± k lnα
2

√−c
b

[
tTFs(ξ )

1± secTFs(ξ )

]
,

u6 = − a
2b

∓ k lnα
2

√−c
b

[cotTFs(ξ )± cscTFs(ξ )],

u7 = − a
2b

∓ k lnα
2

√−c
b

[secTFs(ξ )− tTFs(ξ )],

u8 = − a
2b

∓ k lnα
2

√−c
b

[
cotTFs(ξ )

1± cscTFs(ξ )

]
,

ξ = k
(

x−
(

ck2

2
lnα2 − 3a2

2b

)
t
)

, bc < 0, (21)

u9 = − a
2b

±4k lnα
√−c

b

[
tTFs(ξ )

1− tTFs2(ξ )

]
,

u10 = − a
2b

±4k lnα
√−c

b

[
cotTFs(ξ )

1− cotTFs2(ξ )

]
,

ξ = k
(

x−
(

8ck2 lnα2 − 3a2

2b

)
t
)

, bc < 0. (22)

Figures 1a – d show the characters of the new solu-
tions u1, u3, u5, and u7, respectively, with a = 3, b = 1,
c = −2, and k = 0.25. It is easily seen that the obtained
solutions are periodic ones.

4.2. The Generalized Kawahara Equation

We consider the generalized Kawahara equation

ut + σuux + u2uxx + uxxx −uxxxxx = 0, (23)

where σ is a real constant. The generalized Kawahara
equation describes many different physical phenom-
ena, for example in the theory of magneto-acoustic
waves in plasmas [24].

Now, we can apply the TFR method to the gen-
eralized Kawahara equation (23). Substituting (10)
into (23) yields

−ω u′ +σuu′ + k u2u′′+ k2u′′ − k4u′′′′ = 0. (24)

Therefore, the solution of (23) can be expressed as

u = a0 + a1F(ξ )+ a2F2(ξ ). (25)

With the help of the symbolic software Maple, substi-
tuting (25) into (24) yields a set of algebraic equations
with respect to Fi(ξ ). We set the coefficients of Fi(ξ )
(i = 0,1, . . . ,7) in the obtained equation to zero. We
further obtain a system of algebraic equations. Solving
this set of equations for a0, a1, a2, k and ω with the
aid of Maple, we obtain the general formulae of the
solution of the generalized Kawahara equation (23):

u = −
(
2−80k2BA + σ

√
10

)√
10

20

+ 6
√

10B2k2F2(ξ ),

(26)
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(a) (b)

(c) (d)

Fig. 1. The periodic solution of the combined KdV and mKdV equation (14) with a = 3, b = 1, c =−2, and k = 0.25; (a) plots
of u1; (b) plots of u3; (c) plots of u5; (d) plots of u7.

where ξ = k
(

x−
(

1
10 + 24k4B2A2 − σ 2

4

)
t
)

. By se-
lecting the special values of A, B and the corresponding
function F(ξ ), we have the following traveling wave
solutions of the generalized Kawahara equation (23):

u1 = −
(
2−80k2 lnα2 + σ

√
10

)√
10

20
+ 6

√
10lnα2k2tTFs2(ξ ),

u2 = −
(
2 + 80k2 lnα2 + σ

√
10

)√
10

20
+ 6

√
10lnα2k2cotTFs2(ξ ),

(27)

with ξ = k
(

x−
(

1
10 + 24k4 lnα4 − σ 2

4

)
t
)

. The re-
minder solutions are omitted for simplicity. Figure 2
shows the characters of the new solutions of the gener-
alized Kawahara equation (23) with σ = 1 and k = 2.5.

4.3. Ito’s 5th-Order mKdV Equation

We consider Ito’s 5th-order mKdV equation [24]

ut +(6u5 +10σ(u2uxx +uu2
x)+uxxxx)x = 0, (28)

where σ is a real constant. Now, we can apply the TFR

Fig. 2. The periodic solution of the generalized Kawahara
equation (23) with σ = 1 and k = 2.5.

method to Ito’s 5th-order mKdV equation (28). Substi-
tuting (10) into (28) yields

−ωu′+ 30u4u′ + 10σk2(4uu′u′′ + u2u′′′ + u′3)
+ k4u′′′′ = 0.

(29)

Therefore, the solution of Ito’s 5th-order mKdV equa-
tion (28) can be expressed as

u = a0 + a1F(ξ ). (30)

With the help of the symbolic software Maple, substi-
tuting (30) into (29) yields a set of algebraic equations
with respect to Fi(ξ ). We set the coefficients of Fi(ξ )
(i = 0,1, . . . ,6) in the obtained equation to zero. We
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Fig. 3. The periodic solution of the 5th-order mKdV equa-
tion (28) with σ = 1 and k = 2.5.

further obtain a system of algebraic equations. Solving
this set of equations for a0, a1, k and ω with the aid of
Maple, we obtain:

Case 1. σ = −1, a0 = 0,

ω = 6k4B2A2, a1 = ±kB.

Case 2. σ = 1, a0 = 0,

ω = 6k4B2A2, a1 = ikB.

(31)

Here k is an arbitrary constant and i =
√−1. Therefore,

we obtain the general formulae of the solutions of Ito’s
5th-order mKdV equation (28):

u = ±kBF(k(x−6k4B2A2t)), (32)

u = ikBF(k(x−6k4B2A2t)). (33)

With σ = 1, by selecting the special values of A, B and
the corresponding function F(ξ ), we have the follow-
ing traveling wave solutions of Ito’s 5th-order mKdV
equation (28):

u1 = ±k lnα tTFs(k(x−6k4 lnα4 t)),

u2 = ∓k lnα cotTFs(k(x−6k4 lnα4 t)),
(34)

and with σ = −1, we have

u3 = ik lnα tTFs(k(x−6k4 lnα4 t)),

u4 = −ik lnα cotTFs(k(x−6k4 lnα4 t)).
(35)

The reminder solutions are omitted for simplicity. Fig-
ure 3 shows the characters of the new solutions of Ito’s
5th-order mKdV equation (28) with σ = 1 and k = 2.5.

4.4. Ito’s 7th-Order mKdV Equation

We consider Ito’s 7th-order mKdV equation [24]

ut +
(
20σ u7 + 17σ(u4uxx + 2u3u2

x)

+14σ(u2uxxxx + 3uu2
xx + 4uuxuxxx + 5u2

xuxx)

+uxxxxxx
)

x = 0,

(36)

Fig. 4. The periodic solution of the 7th-order mKdV equa-
tion (36) with σ = 1 and k = 2.5.

where σ is a real constant. Now, we can apply the TFR
method to Ito’s 7th-order mKdV equation (36). Substi-
tuting (10) into (36) yields

−ωu′+ 140σu6u′

+70k2(8u3u′u′′ + u4u′′′ + 6u2u′3)
+14σ4k4(6uu′u′′′′ + u2u′′′′ + 13u′u′′2

+10uu′′u′′′ + 9u′2u′′′)+ k6u′′′′′′ = 0.

(37)

Therefore, the solution of Ito’s 7th-order mKdV equa-
tion (36) can be expressed as

u = a0 + a1F(ξ ). (38)

With the help of the symbolic software Maple, substi-
tuting (38) into (37) yields a set of algebraic equations
with respect to Fi(ξ ). We set the coefficients of Fi(ξ )
(i = 0,1, . . . ,8) in the obtained equation to zero. We
further obtain a system of algebraic equations. Solving
this set of equations for a0, a1, k and ω with the aid of
Maple, we obtain:

Case 1. σ = −1, a0 = 0,

ω = 20k6B3A3, a1 = ±kB.

Case 2. σ = 1, a0 = 0,

ω = 20k6B3A3, a1 = ikB.

(39)

Here k is an arbitrary constant and i =
√−1. Therefore,

we obtain the general formulae of the solutions of Ito’s
7th-order mKdV equation (36):

u = ±kBF(k(x−20k6B3A3t)), (40)

u = ikBF(k(x−20k6B3A3t)). (41)

With σ = 1, by selecting the special values of A, B and
the corresponding function F(ξ ), we have the follow-
ing traveling wave solutions of Ito’s 7th-order mKdV
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equation (28):

u1 = ±k lnα tTFs(k(x−20k6 lnα6 t)),

u2 = ∓k lnα cotTFs(k(x−20k6 lnα6 t)),
(42)

and with σ = −1, we have

u3 = ik lnα tTFs(k(x−20k6 lnα6 t)),

u4 = −ik lnα cotTFs(k(x + 20k6 lnα6 t)).
(43)

The reminder solutions are omitted for simplicity. Fig-
ure 4 shows the characters of the new solutions of Ito’s
7th-order mKdV equation (36) with σ = 1 and k = 2.5.

Remark 1. If α = e, the obtained solutions recover
the solutions obtained by the tan function method, gen-
eralized hyperbolic function method and so on.

Remark 2. To the best of our knowledge, the solu-
tion using symmetrical triangular Fibonacci functions
has not been found before.

Remark 3. To the best of our knowledge, the defini-
tions of the symmetrical triangular Fibonacci functions
have not been found before.

5. Summary and Discussion

We have proposed a TFR method and used it to con-
struct new exact solutions of NLPDEs. The obtained
solutions may be of important significance for the ex-
planation of some practical physical problems. In con-
trast to the TFR method, there are some additional mer-
its of our method. First, all the NLPDEs can be solved
with our method more easily than with other tanh-
function methods. More important, for some equa-
tions, with no extra effort we also picked up other new
and more general types of solutions at the same time.
Second, it is quite interesting that we choose A and B
in a Riccati equation to show the number and types
of traveling wave solutions for a NLPDE. Third, this
method is also a computerized method, which allows
to perform complicated and tedious algebraic calcula-
tion using a computer. The TFR method can be applied
to other NLPDEs.

[1] W. Malfliet, Am. J. Phys. 60, 650 (1992); W. Malfliet
and W. Hereman, Phys. Scr. 54, 563, 569 (1996).

[2] A. H. Khater, W. Malfliet, D. K. Callebaut, and E. S.
Kamel, Chaos, Solitons and Fractals 14, 513 (2002).

[3] E. G. Fan, Phys. Lett. A 277, 212 (2000); E. G. Fan and
Y. C. Hong, Phys. Lett. A 292, 335 (2002).

[4] S. K. Liu, Z. T. Fu, S. D. Liu, and Q. Zhao, Phys. Lett.
A 289, 69 (2001); Z. T. Fu, S. K. Liu, S. D. Liu, and
Q. Zhao, Phys. Lett. A 290, 72 (2001); E. J. Parkes,
B. R. Duy, and P. C. Abbott, Phys. Lett. A 295, 280
(2002).

[5] Y. B. Zhou, M. L. Wang, and Y. M. Wang, Phys. Lett.
A 308, 31 (2003).

[6] H. T. Chen and H. Q. Zhang, Chaos, Solitons and
Fractals 20, 765 (2004); Chinese Phys. 12, 1202
(2003).

[7] Y. Yao, Chaos, Solitons and Fractals 24, 301 (2005).
[8] Z. Li and H. Dong, Chaos, Solitons and Fractals (in

press).
[9] H. T. Chen and H. Q. Zhang, Chaos, Solitons and Frac-

tals 15, 585 (2003); Z. Y. Yan, Comm. Theor. Phys. 38,
400 (2002).

[10] A. H. Khater and M. M. Hassan, Z. Naturforsch. 59a,
389 (2004); A. H. Khater, M. M. Hassan, and R. S.
Temsah, J. Phys. Soc. Jpn. 74, 1431 (2005).

[11] J. Liu and K. Yang, Chaos, Solitons and Fractals 22,
111 (2004); M. L. Wang and X. Li, Phys. Lett. A 343,

48 (2005); Z. Sheng, Chaos, Solitons and Fractals 32,
847 (2007).

[12] E. J. Parkes and B. R. Duy, Comput. Phys. Comm.
98, 288 (1996); D. Baldwin, U. Göktaş, W. Hereman,
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