The Role of Aspterric Acid in Auxin-Regulated Reproductive Growth of Arabidopsis thaliana

Atsumi Shimadaa,*, Hisakazu Yamaneb, and Yasuo Kimurac

a Department of Food and Nutrition, Faculty of Food Science and Nutrition, Beppu University, Kita-ishigaki, Beppu-shi 874-8501, Japan. Fax: +81-977-66-9630. E-mail: shimada@nm.beppu-u.ac.jp
b Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
c Department of Biological and Environmental Chemistry, Faculty of Agriculture, Tottori University, Koyama, Tottori-shi, Tottori 680-8553, Japan

* Author for correspondence and reprint requests

Z. Naturforsch. 63c, 554–556 (2008); received March 6, 2008

Application of 100 \(\mu\)m aspterric acid (AA), a pollen growth inhibitor, with different concentrations of indole-3-acetic acid (IAA) results in the recovery of normal pollen development of Arabidopsis thaliana. Treatment with 100 \(\mu\)m AA plus 5 mM IAA significantly induced the normal seed production. Treatment with 100 \(\mu\)m N-1-naphthylphthalamic acid (NPA), a polar auxin transport inhibitor, did not reduce the pollen growth but inhibited seed production. 100 \(\mu\)m NPA plus 5 mM IAA did not induce any seed production. The endogenous level of IAA in stems and leaves of A. thaliana treated with 100 \(\mu\)m AA was similar to that of the untreated control. In contrast to AA treatment, the IAA level by the treatment with 100 \(\mu\)m NPA was about twice as much as that of the untreated control. These results suggest that AA affects the Arabidopsis reproductive growth without inhibiting IAA biosynthesis and transport.

Key words: Aspterric Acid, Indole-3-acetic Acid, Arabidopsis thaliana

Introduction

Auxin, indole-3-acetic acid (IAA), causes important physiological effects on plant growth. IAA promotes root formation, and stem and leaf elongation by its role in inducing cell elongation (Li and Liu, 2003). However, the role of auxin in the reproductive organogenesis is still poorly understood, because the development of floral organs is a complex phenomenon (Martinez-Zapater et al., 1994; Clark and Meyerowitz, 1994). Previous studies indicated that auxin likely plays an important role in the developing gynoecium and androecium of Arabidopsis thaliana (Sessions et al., 1997; Nemhauser et al., 2000; Shimada et al., 2005).

Aspterric acid (AA), a pollen growth inhibitor, has been isolated from the fungus Aspergillus terreus (Tsuda et al., 1978; Shimada et al., 2002) (Fig. 1). Application of AA with IAA resulted in the recovery of the normal pollen development of A. thaliana in our study (Shimada et al., 2005). However, the relationship between AA and IAA through Arabidopsis reproductive growth including seed production has not been fully understood. The mode of action of AA on the reproductive growth of A. thaliana was investigated using HPLC quantification of IAA (Koshiba et al., 1995) and the technique of applying AA with IAA. We describe here the role of AA in the auxin-regulated reproductive growth of A. thaliana.

Materials and Methods

Plant material

Seeds of A. thaliana were sown in plastic pots (8 cm inner diameter) filled with a mixture of perlite and vermiculite (1:1, v/v) and germinated in a growth chamber maintained at 25 °C under continuous light (100 \(\mu\)E/m\(^2\) s). Liquid fertilizer was
applied once a week. The fertilizer contained 5 mm KNO₃, 2.5 mm KH₂PO₄, 2 mm MgSO₄, 2 mm Ca(NO₃)₂, 50 µM Fe-EDTA, 70 µM H₃BO₃, 14 µM MnCl₂, 0.5 µM CuSO₄, 1 µM ZnSO₄, 0.2 µM Na-MoO₄, 10 µM NaCl, and 0.01 µM CoCl₂.

Treatment with AA and plant hormones

Chemicals to be tested were each formulated as an aqueous solution containing 0.1% Tween-80 as a wetting agent and 2% EtOH to aid their solubility. Each solution was sprayed on all leaves with an atomizer at the rate of 1 ml per three pots. The chemicals were applied once in 2 d for a total of 3 treatments from the period rosette leaf formed (17 d after sowing). In combined treatments with IAA, 5 mm IAA was applied alone twice in 4 d after 3 times of combined treatments with AA or N-1-naphthylphthalamic acid (NPA). Triplicate experiments were conducted.

Data collection

Stem length and the number of flower buds were measured everyday from the start of treatment. The stamens were stained with I₂-KI solution and observed under a light microscope after anthesis.

IAA content in stems and leaves of A. thaliana

Extraction of IAA from stems and leaves was carried out according to a modified method of Koshiba et al. (1995). Fresh stems and leaves (ca. 0.1 g) just before anthesis were collected, frozen in liquid N₂ and ground in 1 ml 80% acetone containing 0.1 mg/ml butylated hydroxytoluene (BHT) using a mortar and pestle. The suspension was shaken for 1 h on ice in the darkness and then centrifuged (5 °C, 1200 ¥ g, 10 min). The pellet was re-extracted for 1.5 h with 1.5 ml 80% acetone by shaking on ice. Acetone was evaporated from the combined supernatants, and the residual aqueous solution (1 ml) was adjusted to pH 3 with 1 m HCl. The aqueous phase was then partitioned 3 times with 1 ml cold diethyl ether containing 0.01 mg/ml BHT. The ether was evaporated under a stream of N₂ gas from the combined diethyl ether phase, and the residual diethyl ether solution (0.8 ml) was then partitioned 3 times with 2% NaHCO₃. The aqueous phase was adjusted to pH 3 with 1 m HCl. The aqueous phase was then partitioned 3 times with 1 ml cold diethyl ether containing 0.01 mg/ml BHT. The combined ether phase was evaporated under a stream of N₂ gas and then 0.05 ml MeOH was added. The MeOH solution was used for IAA quantification.

IAA in each sample was quantified chromatographically by HPLC (Model LC-6A; Shimadzu, Tokyo) with a Nucleosil 5N(CH₃)₂ column (6 mm i.d. ¥ 100 mm; Senshu, Tokyo) at a flow rate of 1 ml/min with 0.3% AcOH in MeOH as the mobile phase. The excitation wavelength was 280 nm, and the emission wavelength was 355 nm; triplicate experiments were conducted.

Results and Discussion

Comparative effects of AA, NPA and combined treatments with IAA

The effects of AA, NPA and combined treatments with IAA on the reproductive growth and seed production of A. thaliana are shown in Table I. The anthers treated with 100 µM AA plus 5 mm IAA contained pollen grains, and the siliques treated with 100 µM AA plus 5 mm IAA contained seeds. In contrast to combined treatment, the anthers treated with 100 µM AA alone contained no pollen. Application of 100 µM NPA alone did not show any inhibitory activity against

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Pollen formation</th>
<th>Seed production</th>
<th>Stem length [mm]</th>
<th>Flower buds’ (No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>+</td>
<td>+</td>
<td>98ᵇ</td>
<td>22ᵇ</td>
</tr>
<tr>
<td>100 µM AA</td>
<td>−</td>
<td>−</td>
<td>104ᵇ</td>
<td>17ᵇ</td>
</tr>
<tr>
<td>100 µM AA + 1 mm IAA</td>
<td>+</td>
<td>−</td>
<td>90ᵇ</td>
<td>16ᵇ</td>
</tr>
<tr>
<td>100 µM AA + 5 mm IAA</td>
<td>+</td>
<td>+</td>
<td>116ᵇ</td>
<td>18ᵇ</td>
</tr>
<tr>
<td>100 µM NPA</td>
<td>+</td>
<td>−</td>
<td>43ᵃ</td>
<td>10ᵃ</td>
</tr>
<tr>
<td>100 µM NPA + 1 mm IAA</td>
<td>+</td>
<td>−</td>
<td>48ᵃ</td>
<td>8ᵃ</td>
</tr>
<tr>
<td>100 µM NPA + 5 mm IAA</td>
<td>+</td>
<td>−</td>
<td>57ᵃ</td>
<td>9ᵃ</td>
</tr>
</tbody>
</table>

Data of stem length and flower buds were collected 14 days after the first application.

ᵃ Within the same row, values with different superscripts (a and b) are significantly different, p < 0.05.
pollen development, but the treatment inhibited the reproductive growth and seed production of *A. thaliana*. Similarly, 100 μM NPA plus 5 mM IAA inhibited the growth and seed production of *A. thaliana* without pollen growth inhibition.

Effect of AA on the endogenous level of IAA

The endogenous level of IAA in stems and leaves of *A. thaliana* treated with 100 μM AA was similar to that of the untreated control. In contrast to AA treatment, the treatment with 100 μM NPA increased the IAA level by 186% of the untreated control (Table II).

AA inhibited *Arabidopsis* pollen development at meiosis (Shimada et al., 2002). In contrast to the treatment with AA alone, combined treatment with AA and IAA resulted in the recovery of the normal pollen development of *A. thaliana* (Shimada et al., 2005). Furthermore, combined treatment with AA plus 5 mM IAA resulted in the recovery of the seed production. NPA, a polar auxin transport inhibitor, did not inhibit *Arabidopsis* pollen development but reduced the normal reproductive growth including seed production. Similarly, application of NPA with IAA resulted in the inhibition of the normal reproductive growth. Loss of polar auxin transport in developing *Arabidopsis* leaves, following NPA treatment, reduced the flow of auxin from leaf margins to reproductive organs (Nemhauser et al., 2000). In contrast to NPA treatment, the inhibitory effects against the reproductive growth by AA treatment released by IAA application simultaneously. AA did not reduce the endogenous IAA level. These results suggest that AA is likely to bind the promoters of auxin-regulated genes (Sessions et al., 1997) or an auxin receptor such as the F-box protein TIR1 (Dharmasiri et al., 2005; Kepinski and Leyser, 2005) and affects the *Arabidopsis* reproductive growth without inhibiting IAA biosynthesis and transport. The mode of action of AA is thus different from that of NPA toward auxin-regulated reproductive growth of *A. thaliana*.

Acknowledgements

This work was supported by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to A. Shimada (No. 16580094).

Table II. Effects of AA and NPA on the endogenous level of *A. thaliana*.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>IAA level [ng/g fresh weight]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.1<sup>a</sup></td>
</tr>
<tr>
<td>100 μM AA</td>
<td>14.6<sup>b</sup></td>
</tr>
<tr>
<td>100 μM NPA</td>
<td>29.3<sup>b</sup></td>
</tr>
</tbody>
</table>

Each sample was collected just before anthesis.

* Within the same row, values with different superscripts (a and b) are significantly different, *p* < 0.05.