A Theoretical Investigation of 2D MAXY-JRES NMR Spectroscopy of CD_nCD_m Groups

İrfan Şaka and Azmi Genci̇ten
Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139, Samsun, Turkey
Reprint requests to A. G.; Fax: +90 362 4576081; E-mail: gencten@omu.edu.tr

There exists a variety of multiple-pulse NMR experiments for spectral editing of complex molecules in solution. Maximum quantum correlation NMR (MAXY NMR) spectroscopy is one of the techniques for distinguishing CH_n groups by editing 1H NMR spectra. Spectral assignments of 2D homonuclear J-resolved NMR spectroscopy become too difficult, due to complex overlapping spectra. In order to overcome this problem a new technique called 2D MAXY-JRES NMR spectroscopy, which is the combination of MAXY NMR and homonuclear J-resolved NMR spectroscopy, is used.

In this study, product operator description of 2D MAXY-JRES NMR spectroscopy is performed for IS_nI' ($I = I' = \frac{1}{2}; S = S' = 1; n = 1, 2, 3; m = 1, 2$) multi-spin systems. Experimental suggestions are made and simulated spectra are presented for the 2D MAXY-JRES NMR experiment. Therefore, it is shown that 2D MAXY-JRES NMR spectroscopy can be used to distinguish CD, CD$_2$ and CD$_3$ groups from each other in CD$_n$CD$_m$ groups.

Key words: NMR; MAXY-JRES; Product Operator Formalism; Spin-1.

1. Introduction

There exists a large number of homo- and heteronuclear multiple-pulse 1D, 2D and 3D nuclear magnetic resonance (NMR) experiments. Maximum quantum correlation (MAXY) NMR spectroscopy is one of the techniques for distinguishing CH$_n$ groups by editing 1H NMR spectra [1 – 7]. ^{13}C NMR spectroscopy is also widely used in editing methods such as DEPT [8] and SEMUT [9]. Editing and selective detection methods for 1H NMR spectroscopy are reviewed in [10]. In homonuclear J-resolved NMR spectroscopy, the chemical shift and spin-spin coupling parameters are resolved along the two different axes for the same kind of coupled nuclei such as 1H. Sometimes, spectral assignments of 2D homonuclear J-resolved NMR spectroscopy become too difficult, due to complex overlapping spectra. In order to overcome this problem a new technique called 2D MAXY-JRES NMR spectroscopy, which is the combination of MAXY and homonuclear J-resolved NMR spectroscopy, is used [3]. This technique is used to distinguish CH$_n$CH$_m$ groups in complex samples such as biological fluids [3]. 2H NMR spectroscopy became a powerful technique for different applications such as deuterium labelling and structure elucidation [11]. Therefore, 2D MAXY-JRES NMR spectroscopy can be also used for the identification of CD$_n$CD$_m$ groups in complex samples.

As NMR is a quantum mechanical phenomenon, nuclear spin systems can be treated by quantum mechanical methods. The product operator formalism, as a simple quantum mechanical method, has been developed for the analytical description of multiple-pulse NMR experiments of weakly coupled spin systems in liquids having spin-$1/2$ and spin-1 nuclei [12 – 22]. In this formalism, the spin operators themselves and their direct products are treated as operators, and the multiple-pulse experiments are expressed as products of the operators. Using the product operator theory, semi-automated NMR spectroscopy is applied to CD$_n$ groups [23]. Experimental and theoretical investigations of ^{13}C DEPT NMR spectroscopy of CD$_n$ systems are presented in [24]. For CH$_n$ and CD$_n$ groups, the product operator theory of a 2D DEPT J-resolved NMR experiment is investigated [25, 26]. Product operator descriptions of MAXY and MAXY-HMQC NMR experiments of CD$_n$ groups are also reported in our recent studies [27, 28]. The product operator theory for spin-$3/2$ and its application to 2D J-resolved NMR spectroscopy is reported [29]. For spin systems having spin-$3/2$ nuclei,
by using the product operator formalism, theoretical investigations of 3D J-resolved, DEPT, SEMUT, INEPT and RINEPT NMR experiments are also presented [30–32]. The product operator theory of high resolution solution double quantum spectrum of two spin-1 AX systems are investigated [21, 33, 34]. By using the product operator theory in NMR experiments, experimental results can be confirmed and also new experimental suggestions can be made [19, 23]. In the present study experimental suggestions are made.

In the present study, first, evolutions of some product operators under the homonuclear scalar spin-spin coupling Hamiltonian for a SS' ($S = 1$, $S' = 1$) spin system are obtained. Then, by using the product operator formalism, theoretical results are obtained for the 2D MAXY-JRES NMR experiment of $I_n I'_m I'_n I'_m$ ($I = 1/2$; $S = S' = 1$; $n = 1, 2, 3$; $m = 1, 2$) multi-spin systems. By using the obtained theoretical results, experimental suggestions are presented, and simulated spectra of various groups are obtained for the 2D MAXY-JRES NMR experiment. To the best of our knowledge, this will be the first product operator description of a 2D MAXY-JRES NMR experiment of CD_nCD_m groups. As a result, it is shown that one can perform this experiment to distinguish CD, CD_2 and CD_3 groups in CD_nCD_m systems.

2. Theory

The product operator theory is the expansion of the density matrix operator in terms of representation of angular momentum operators for individual spins. For the IS ($I = 1/2$, $S = 1$) spin system, four Cartesian spin angular momentum operators for $I = 1/2$, E_I, I_x, I_y, I_z, and nine Cartesian spin angular momentum operators for $S = 1$, E_S, S_x, S_y, S_z, S_x^2, S_y^2, S_z^2, can be easily found [35]. So, $4 \times 9 = 36$ product operators for the IS ($I = 1/2$, $S = 1$) spin system are obtained with direct products of these angular momentum operators. For the IS ($I = 1$, $S = 1$) spin system there will be $9 \times 9 = 81$ product operators.

Time dependence of the density matrix is governed by the Liouville-von Neumann equation:

$$\frac{d\rho}{dt} = \frac{i}{\hbar} [\rho, H],$$

where $[\rho, H]$ is the commutator of the density matrix, ρ, and the Hamiltonian, H. When the Hamiltonian is time-independent, the solution of the (1) is

$$\rho(t) = \exp(-iHt)\rho(0)\exp(iHt),$$

where H is the total Hamiltonian which consists of radiofrequency ($r.f.$) pulse, chemical shift and spin-spin coupling Hamiltonians, and $\rho(0)$ is the density matrix at $t = 0$. After employing the Hausdorff formula [16]

$$\exp(-iHt)A\exp(iHt) = A - (\frac{i}{2!})[H, [H, [H, A]]] + \cdots,$$

evolutions of product operators under the r.f. pulse, chemical shift and spin-spin coupling Hamiltonians can be easily obtained [12, 16, 18]. A complete product operator theory for the IS ($I = 1/2$, $S = 1$) spin system and its application to the DEPT-HMQC NMR experiment is presented in our recent study [36]. For the IS ($I = 1$, $S = 1$) spin system the evolutions of some product operators under the spin-spin coupling Hamiltonian ($\mathcal{H}_J = 2\pi I_x S_z$) are known; they are given as follows [21, 33, 34]:

$$I_x S_y \mathcal{H}_J = \frac{1}{2} I_x S_y (c_{2J} + 1) + \frac{1}{2} I_x S_z (c_{2J} - 1)$$

$$+ \frac{1}{2} (I_x S_y - I_x S_z) S_{2J},$$

$$I_x S_y^2 \mathcal{H}_J = \frac{1}{2} I^2_x S_y (c_{4J} + 1) - \frac{1}{2} I^2_x S_z (c_{4J} - 1)$$

$$+ \frac{1}{2} I^2_x S_{xy} S_{4J},$$

$$I_x S_y^2 \mathcal{H}_J = \frac{1}{2} I^2_x S_y (c_{4J} + 1) - \frac{1}{2} I^2_x S_z (c_{4J} - 1)$$

$$- \frac{1}{2} I^2_x S_{xy} S_{4J}.$$
detected on the y-axis. So, in order to estimate the free induction decay (FID) signal of a multiple-pulse NMR experiment, the density matrix operator should be obtained at the end of the experiment.

3. Evolutions of Some Product Operators under the Spin-Spin Coupling Hamiltonian

As the homonuclear spin-spin coupling occurs between two spin-1 nuclei (S and S’ spin) during t₁ in the 2D MAXY-RES NMR experiment, we need to obtain the evolutions of some product operators under the homonuclear scalar spin-spin coupling Hamiltonian, \(\mathcal{H}(S-S') = 2\pi J_{SS'} S_x S'_x \). By using the Hausdorff formula, evolution of the \(S^2_x \) product operator under the spin-spin coupling Hamiltonian can be obtained as

\[
S^2_x \xrightarrow{\mathcal{H}_{SS'} t} \exp(-2i\pi J_{SS'} S_x S'_x t)S^2_x \exp(2i\pi J_{SS'} S_x S'_x t) = \frac{(i2\pi J)^2 t}{2} A(1) + \frac{(i2\pi J)^3 t^3}{3!} A(2) + \ldots
\]

\[
A(1) = [S_x S'_x, S^2_x], \quad A(2) = [S_x S'_x, A(1)], \quad A(3) = [S_x S'_x, A(2)].
\]

Using commutation relations and \(S^2_x \equiv S^2_x - 2(n \geq 3) \) for spin-1,

\[
S^2_x \xrightarrow{\mathcal{H}_{SS'} t} S^2_x - \frac{1}{2} \left\{ \frac{(4\pi J)^2 t^2}{2!} (S^2_x - S^2_x) S^2_x + \ldots \right\} + \frac{1}{2} \left\{ \frac{(4\pi J)^3 t^3}{3!} [S_x, S'_x] S'_x + \ldots \right\}
\]

Table 1. Evolutions of some product operators under the spin-spin coupling Hamiltonian (\(t_{ES} = 2\pi J_{SS'} S_x S'_x \)). \(S_{xz} = \{S_z, S'_z\}, S_{yz} = \{S_y, S'_y\}, S_{xy} = \{S_x, S'_x\} \).

<table>
<thead>
<tr>
<th>Product operator</th>
<th>Evolution of product operator under the spin-spin coupling Hamiltonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S^2_x)</td>
<td>(S^2_x - \frac{1}{2} \left{ \frac{(4\pi J)^2 t^2}{2!} (S^2_x - S^2_x) S^2_x + \ldots \right} + \frac{1}{2} \left{ \frac{(4\pi J)^3 t^3}{3!} [S_x, S'_x] S'_x + \ldots \right})</td>
</tr>
<tr>
<td>(S^2_y)</td>
<td>(S^2_y - \frac{1}{2} \left{ \frac{(4\pi J)^2 t^2}{2!} (S^2_y - S^2_y) S^2_y + \ldots \right} + \frac{1}{2} \left{ \frac{(4\pi J)^3 t^3}{3!} [S_y, S'_y] S'_y + \ldots \right})</td>
</tr>
<tr>
<td>(S^2_z)</td>
<td>(S^2_z - \frac{1}{2} \left{ \frac{(4\pi J)^2 t^2}{2!} (S^2_z - S^2_z) S^2_z + \ldots \right})</td>
</tr>
</tbody>
</table>

shorthand notation form:

\[
S^2_x \xrightarrow{2\pi t IS_x S'_x} S^2_x - \frac{1}{2} (S^2_x - S^2_x) S^2_x (c_{4J} - 1) + \frac{1}{2} S_{xy} S_{x'y} S_{4J}.
\]

Here, and in the following equations, \(S_{xz} = [S_z, S'_z] \), \(S_{yz} = [S_y, S'_y] \), \(S_{xy} = [S_x, S'_x] \), \(c_{4J} = \cos(4\pi J t) \) and \(s_{4J} = \sin(4\pi J t) \). For the remaining product operators, the similar procedure is applied and the obtained results are given in Table 1. Similar evolutions can be easily obtained for the product operators \(S^2_x, S^2_y, S^2_z, S_{xz}, S_{yz}, \text{and } S_{xy} \) under the scalar spin-spin coupling Hamiltonian.

4. Results and Discussion

In this section, the analytical descriptions of 2D MAXY-RES NMR spectroscopy of \(I_{m+n}I'_{m+n} \) \((I = I' = 1, 5 = 5') \) multi-spin systems are presented by using the product operator theory. This section is divided into two subsections. In the first one, theoretical results for the analytical description of the 2D MAXY-RES experiment are obtained; in the second one, experimental suggestions and simulated spectra for several \(CD_{m+n}CD_{m+n} \) groups are presented.

4.1. Product Operator Theory

For the product operator description of the 2D MAXY-RES NMR experiment, the pulse sequence,
Table 2. Evolutions of nine angular momentum operators under the r.f. pulse Hamiltonian (\(\theta_S\)) at x- and y-axes for \(S = 1\) [36]. \(c_{\phi} = \cos(n\phi_d)\) and \(s_{\phi} = \sin(n\phi_d)\).

<table>
<thead>
<tr>
<th>Angular momentum operator</th>
<th>(\phi)</th>
<th>Evolution under the r.f. pulse Hamiltonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_x)</td>
<td>(x)</td>
<td>(S_x)</td>
</tr>
<tr>
<td>(S_y)</td>
<td>(S_{x0} + S_{y0})</td>
<td>(S_{x0} + S_{y0})</td>
</tr>
<tr>
<td>(S_z)</td>
<td>(S_{x0} - S_{y0})</td>
<td>(S_{x0} - S_{y0})</td>
</tr>
<tr>
<td>([S_x, S_y]_+)</td>
<td>(x)</td>
<td>([S_x, S_y]_+)</td>
</tr>
<tr>
<td>([S_x, S_x]_+)</td>
<td>(x)</td>
<td>([S_x, S_x]_+)</td>
</tr>
<tr>
<td>([S_y, S_z]_+)</td>
<td>(x)</td>
<td>([S_y, S_z]_+)</td>
</tr>
<tr>
<td>([S_x, S_z]_+)</td>
<td>(y)</td>
<td>([S_x, S_z]_+)</td>
</tr>
<tr>
<td>([S_y, S_y]_+)</td>
<td>(y)</td>
<td>([S_y, S_y]_+)</td>
</tr>
<tr>
<td>([S_z, S_z]_+)</td>
<td>(y)</td>
<td>([S_z, S_z]_+)</td>
</tr>
<tr>
<td>(S_x^2)</td>
<td>(x)</td>
<td>(S_x^2)</td>
</tr>
<tr>
<td>(S_y^2)</td>
<td>(y)</td>
<td>(S_y^2)</td>
</tr>
<tr>
<td>(S_z^2)</td>
<td>(y)</td>
<td>(S_z^2)</td>
</tr>
</tbody>
</table>

Table 3. Evolutions of nine angular momentum operators under the chemical shift Hamiltonian \((\Omega_S S_z)\) for \(S = 1\) [36]. \(c_{\phi} = \cos(n\Omega_d)\) and \(s_{\phi} = \sin(n\Omega_d)\).

<table>
<thead>
<tr>
<th>Angular momentum operator</th>
<th>(\phi)</th>
<th>Evolution under the chemical shift Hamiltonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_x)</td>
<td>(S_{x0} + S_{y0})</td>
<td>(S_{x0} + S_{y0})</td>
</tr>
<tr>
<td>(S_y)</td>
<td>(S_{x0} - S_{y0})</td>
<td>(S_{x0} - S_{y0})</td>
</tr>
<tr>
<td>(S_z)</td>
<td>(S_{x0} + S_{y0})</td>
<td>(S_{x0} + S_{y0})</td>
</tr>
<tr>
<td>([S_x, S_y]_+)</td>
<td>(x)</td>
<td>([S_x, S_y]_+)</td>
</tr>
<tr>
<td>([S_x, S_x]_+)</td>
<td>(x)</td>
<td>([S_x, S_x]_+)</td>
</tr>
<tr>
<td>([S_y, S_z]_+)</td>
<td>(x)</td>
<td>([S_y, S_z]_+)</td>
</tr>
<tr>
<td>([S_x, S_z]_+)</td>
<td>(y)</td>
<td>([S_x, S_z]_+)</td>
</tr>
<tr>
<td>([S_y, S_y]_+)</td>
<td>(y)</td>
<td>([S_y, S_y]_+)</td>
</tr>
<tr>
<td>([S_z, S_z]_+)</td>
<td>(y)</td>
<td>([S_z, S_z]_+)</td>
</tr>
<tr>
<td>(S_x^2)</td>
<td>(x)</td>
<td>(S_x^2)</td>
</tr>
<tr>
<td>(S_y^2)</td>
<td>(y)</td>
<td>(S_y^2)</td>
</tr>
<tr>
<td>(S_z^2)</td>
<td>(y)</td>
<td>(S_z^2)</td>
</tr>
</tbody>
</table>

illustrated in Fig. 1, is used [3], where the density matrix operator at each stage of the experiment is labelled with numbers. \(^{13}\)C is treated as spins I and \(I^\prime\), and \(^2\)H(D) as spins S and \(S^\prime\) in Figure 1. In the pulse sequence, the optimum value of \(\Delta\) is \(1/(2J_{SS})\), \(\Delta^\prime\) is a short compensation delay, \(t_1\) is the incremented evolution delay during homonuclear spin-spin coupling, which takes place between S and \(S^\prime\) spins and \(t_2\) is the acquisition time for S and \(S^\prime\) spins along y-axes [3]. Starting from the density matrix operator at thermal equilibrium, one should apply the required Hamiltonians during the pulse sequence and obtain the density matrix operator at the end of the experiment. For this experiment, r.f. pulse, chemical shift and spin-spin coupling Hamiltonians are applied. For \(I = I^\prime = \frac{1}{2}\) spins, evolutions of angular momentum operators under the r.f. pulse Hamiltonian are known [12, 22]. In the case of \(S = S^\prime = 1\) spins, evolutions of 9 angular momentum operators under the r.f. pulse Hamiltonian were obtained in our previous study [36]. They are presented in Table 2. During \(t_2\), the chemical shift Hamiltonian for angular momentum operators of \(S = S^\prime = 1\) spins is applied. Their evolutions are presented in Table 3 [36]. During \(\Delta\) and \(\Delta^\prime\), the spin-spin coupling Hamiltonians \(\mathcal{H}_{I} (I - S) = 2\pi J_{IS} S_{I} S_{S}\) and \(\mathcal{H}_{I^\prime} (I^\prime - S^\prime) = 2\pi J_{IS^\prime} I_{S^\prime} S_{S^\prime}\) are applied to the IS \((I = \frac{1}{2}, S = 1)\) and...
I. Saka and A. Gencten · 2D MAXY-JRES NMR Spectroscopy of CD₃CD₄ Groups

For the IS' IS' multi-spin system, the density matrix at thermal equilibrium is \(\sigma_{0} = S_{x} + S_{y} \). By using the computer program the following density matrices for each labelled point are obtained:

\[
\sigma_{0} = \frac{90/\pi(S' S)}{2J_{S,I}J_{I} (S) (A=1)} - S_{x} - S'_{y} \equiv \sigma_{1}, \quad (14)
\]

\[
2J_{S}S_{x} + 2J_{I}S'_{x}, \quad (15)
\]

\[
2J_{S}S_{x} - 2J_{I}S'_{x}, \quad (16)
\]

\[
2J_{S}S_{x} + 2J_{I}S'_{x}, \quad (17)
\]

\[
-2J_{S}S_{x} - 2J_{I}S'_{x}, \quad (18)
\]

\[
2J_{S}S_{x} + 2J_{I}S'_{x}, \quad (19)
\]

where \(c_{\alpha} = \cos(n\pi J_{S} t), s_{\alpha} = \sin(n\pi J_{S} t), c'_{\alpha} = \cos(n\pi J_{I} t), s'_{\alpha} = \sin(n\pi J_{I} t) \),

\(c_{nS} = \cos(n\Omega_{S} t), s_{nS} = \sin(n\Omega_{S} t), c'_{nS} = \sin(n\Omega_{S} t), s'_{nS} = \cos(n\Omega_{S} t) \),

\(S_{x} = [S_{x}, S_{y}]_{+}, S_{x} = [S_{x}, S_{y}]_{+}, S_{x} = [S_{x}, S_{y}]_{+}, S_{x} = [S_{x}, S_{y}]_{+} \).

In the density matrix operator, only the terms with observable product operators are kept as they are the only ones that contribute to the signal on y-axis detection. Then the magnetization along the y-axis is proportional to \(\langle S_{y} \rangle + \langle S'_{y} \rangle \).

\[
M_{y}(t_{1} t_{2}) \approx \langle S_{y} \rangle + \langle S'_{y} \rangle = \text{Tr}[S_{y}]_{16} + \text{Tr}[S'_{y}]_{16}. \quad (20)
\]

Now it is necessary to obtain the \(\text{Tr}[S_{y} O] \) and \(\text{Tr}[S'_{y} O'] \) values of observable product operators indicated by \(O \) and \(O' \). These trace values are calculated by a computer program in Mathematica and the results for several multi-spin systems are given in Tables 5 and 6. For example, trace of the \(S_{y} \) product operator is calculated as

\[
\text{Tr}[S_{y} O] = \text{Tr}[S_{y} S_{y}], \quad (21)
\]

By using Tables 5 and 6,

\[
\langle S_{y} \rangle + \langle S'_{y} \rangle = -8(1 + 2c_{2j})c_{s} s_{\theta} - 8(1 + 2c'_{2j})c'_{s} s_{\theta} \quad (22)
\]

is obtained for the IS' IS' multi-spin system. This equation represents the FID signals of the 2D MAXY-JRES NMR experiment for the IS' IS' multi-spin system. There exist triplet signals with the same intensity distribution of 1:1:1 for both \(S \) and \(S' \) spins at the coordinates \((2J_{S}, \Omega_{S}) : (-2J_{S}, \Omega_{S}) \) and \((2J', \Omega_{S}) : (-2J', \Omega_{S}) \), respectively. Another example can be the IS' IS' multi-spin system. As one can guess, product operator calculations for this spin system will be more complicated than those of the IS' IS' multi-spin system. The product operator description of this spin system is provided in Appendix B.

For the IS' IS', IS' IS', IS' IS', IS' IS' and IS' IS' multi-spin systems, the trace values of the density matrix operators and their signal coordinates with the intensity distributions are given in Tables 7 and 8 for \(S \) and \(S' \) spins, respectively.

\[
\sum_{i=1}^{n} \text{Tr}[S_{y}]_{16} + \sum_{j=1}^{m} \text{Tr}[S'_{y}]_{16} \quad \text{values obtained for the IS' IS', IS' IS', IS' IS' and IS' IS' multi-spin systems represent the FID signals of the 2D MAXY-JRES NMR experiment of CDCD, CD₂CD, CD₃CD, CD₂CD₂ and CD₃CD₂ groups},
\]

\[\sum_{i=1}^{n} \text{Tr}[S_{y}]_{16} + \sum_{j=1}^{m} \text{Tr}[S'_{y}]_{16} \quad \text{values obtained for the IS' IS', IS' IS', IS' IS' and IS' IS' multi-spin systems represent the FID signals of the 2D MAXY-JRES NMR experiment of CDCD, CD₂CD, CD₃CD, CD₂CD₂ and CD₃CD₂ groups},\]
Table 5. Results of the $\sum_{l=1}^{n} \text{Tr}[S_l O]$ calculations for observable product operators of $I_{S_l} S_{S_m}'$ multi-spin systems ($k = x, y, z$; $l = x, y, z$; $o = x, y, z$; $p = x, y, z$).

<table>
<thead>
<tr>
<th>Spin system</th>
<th>Product operators (O)</th>
<th>$\sum_{l=1}^{n} \text{Tr}[S_l O]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$IS'S'$</td>
<td>S_y</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>$S_y S_y'$</td>
<td>16</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>$S_y + S_{z'}$</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>$S_y (S_{x1} + S_{y1}) + S_{y1} (S_{x1} + S_{y1})$</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>$S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}'$</td>
<td>64</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>$S_y + S_{z'}$</td>
<td>648</td>
</tr>
<tr>
<td></td>
<td>$S_y (S_{x1} + S_{y1}) + S_{y1} (S_{x1} + S_{y1})$</td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td>$S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}'$</td>
<td>864</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>$S_y + S_{z'}$</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>$S_y (S_{x1} + S_{y1}) + S_{y1} (S_{x1} + S_{y1})$</td>
<td>864</td>
</tr>
<tr>
<td></td>
<td>$S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}'$</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>$S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}'$</td>
<td>128</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>$S_y + S_{z'}$</td>
<td>1944</td>
</tr>
<tr>
<td></td>
<td>$S_y (S_{x1} + S_{y1}) + S_{y1} (S_{x1} + S_{y1})$</td>
<td>5184</td>
</tr>
<tr>
<td></td>
<td>$S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}'$</td>
<td>2304</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>$S_y + S_{z'}$</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>$S_y (S_{x1} + S_{y1}) + S_{y1} (S_{x1} + S_{y1})$</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>$S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}'$</td>
<td>1536</td>
</tr>
<tr>
<td></td>
<td>$S_{x1} S_{x1}' S_{y1}' + S_{x1} S_{x1}' S_{y1}'$</td>
<td>256</td>
</tr>
</tbody>
</table>

Table 6. Results of the $\sum_{j=1}^{m} \text{Tr}[S_j O]$ calculations for observable product operators of $I_{S_l} S_{S_m}'$ multi-spin systems ($k = x, y, z$; $l = x, y, z$; $o = x, y, z$; $p = x, y, z$).

<table>
<thead>
<tr>
<th>Spin system</th>
<th>Product operators (O)</th>
<th>$\sum_{j=1}^{m} \text{Tr}[S_j O]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$IS'S'$</td>
<td>S_y</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>$S_y S_y'$</td>
<td>16</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>$(S_{x1} + S_{y1}) S_y'$</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>$S_{x1}' S_{x1}' S_y'$</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>$S_{x1}' S_{x1}' S_y'$</td>
<td>32</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>S_y</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>$(S_{x1} + S_{y1}) S_y'$</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>$(S_{x1}' S_{x1}' S_y')$</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>$S_{x1}' S_{x1}' S_y'$</td>
<td>64</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>S_y</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>$(S_{x1} + S_{y1}) S_y'$</td>
<td>864</td>
</tr>
<tr>
<td></td>
<td>$(S_{x1}' S_{x1}' S_y')$</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>$S_{x1}' S_{x1}' S_y'$</td>
<td>128</td>
</tr>
<tr>
<td>$IS'S'$</td>
<td>S_y</td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td>$(S_{x1} + S_{y1}) S_y'$</td>
<td>3456</td>
</tr>
<tr>
<td></td>
<td>$(S_{x1}' S_{x1}' S_y')$</td>
<td>1536</td>
</tr>
<tr>
<td></td>
<td>$S_{x1}' S_{x1}' S_y'$</td>
<td>256</td>
</tr>
</tbody>
</table>

respectively. The $\sum_{l=1}^{n} \text{Tr}[S_l \sigma_1]$ follows:

values for $I_{S_l} S_{S_m}'$ $\{l = l', \sigma = \sigma'; n = 1, 2, 3; m = 1, 2\}$ multi-spin systems can be generalized as $\sum_{l=1}^{m} \text{Tr}[S_l \sigma_1] + \sum_{j=1}^{m} \text{Tr}[S_j \sigma_1](I_{S_l} S_{S_m}') = $
\[
-8n(1 + 2c_{2j})m^m c_s (1 - 2c_{2j})^{m-1}s_\theta
- 8m(1 + 2c_{2j})m^m c_s (1 - 2c_{2j})^{m-1}s_\theta.
\]

The \(\Sigma_{j=1}^n \text{Tr}[S_{ij}^r \sigma_{16}] + \Sigma_{j=1}^m \text{Tr}[S_{ij}^r \sigma_{16}] \) values can be normalized by multiplication of the first term with \(36/(8m\text{Tr}(E)) \) and the second term with \(36/(8m\text{Tr}(E')) \). Here \(E \) and \(E' \) is the unity product operator of the corresponding spin system. So, normalized FID values can be also generalized as follows:

\[
\Sigma_{j=1}^n \text{Tr}[S_{ij} \sigma_{16}] + \Sigma_{j=1}^m \text{Tr}[S_{ij}^r \sigma_{16}] = \\
- \frac{1}{m} \frac{3n+m-2}{(1 + 2c_{2j})m^m c_s (1 - 2c_{2j})^{m-1}s_\theta} (24)
\]

\[
- \frac{1}{n} \frac{3n+m-2}{(1 + 2c_{2j})m^m c_s (1 - 2c_{2j})^{m-1}s_\theta}
\]

The plots of these normalized and generalized functions of 2D \(^2\)H MAXY-JRES NMR spectroscopy are presented in Figure 2. As can be seen in this figure, the relative signal intensities of the IS, IS\(_2\) and IS\(_3\) groups vary as functions of the selective pulse angle \(\theta \).

4.2. Experimental Suggestions and Simulated Spectra

The real relative signal intensities of the 2D MAXY-JRES NMR experiment for CD\(_n\) groups are given in Table 9. As can be seen in Table 9 and in Fig. 2, for \(\theta = 195^\circ \) or \(345^\circ \), while CD and CD\(_3\) groups are giving positive signals CD\(_2\) groups give negative signals. When the experiment is performed for angles of 210\(^\circ\) or 330\(^\circ\), positive signals are only observed for
Table 9. Real relative signal intensities of the 2D MAXY-JRES NMR experiment of CDₙ groups for several pulse angles θ.

<table>
<thead>
<tr>
<th>Spin system</th>
<th>θ = 195° or 345°</th>
<th>θ = 210° or 330°</th>
<th>θ = 225° or 315°</th>
<th>θ = 270°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iₛ(CD)</td>
<td>0.259</td>
<td>0.5</td>
<td>0.707</td>
<td>1</td>
</tr>
<tr>
<td>Iₛ₂(CD₂)</td>
<td>−0.379</td>
<td>0</td>
<td>1.414</td>
<td>6</td>
</tr>
<tr>
<td>Iₛ₃(CD₃)</td>
<td>0.416</td>
<td>0</td>
<td>2.121</td>
<td>27</td>
</tr>
</tbody>
</table>

CD groups. For the angle of 270°, all groups, CD, CD₂ and CD₃, give positive signals with the real relative signal intensities of 1, 6 and 27, respectively. When the pulse angle is 225° or 315°, real relative signal intensities of the CD, CD₂ and CD₃ groups are 0.707, 1.414 and 2.121, respectively. By comparing their real relative signal intensities obtained for the angles of 195°, 210° and 270°, one can easily distinguish CD, CD₂ and CD₃ groups from each other. After these identifications, the splitting of signals in the spectra of the 2D MAXY-JRES NMR experiment can be used for the identification of neighbour ²H nuclei. The explanation for this is given as follows.

For product operator description and spectrum simulation of multiple-pulse NMR experiments, a computer program was written by Kanters et al. [37, 38]. This is called Product Operator Formalism using Maple (POF.M). In order to obtain the simulated spectra, POF.M is implemented for Fourier transformation of our obtained theoretical results. In simulated spectra of CDₙCDₘ groups, chemical shifts of ²H nuclei are set to be 11, 7 and 3 ppm for CD, CD₂ and CD₃ groups, respectively. Spin-spin coupling constants between two ²H nuclei are assumed to be 3, 4 and 5 Hz in CD₂CD, CD₃CD and CD₃CD₂ groups, respectively. For the angle θ = 195°, the simulated spectrum of the CD₂CD group is presented in Fig. 3; three negative signals (−1 : −1 : −1) and five positive signals (1 : 2 : 3 : 2 : 1) for CD₂ and CD groups, respectively, can be observed. In Fig. 4, the simulated spectrum of the CD₃CD group is given for θ = 210°. For this angle, as expected, only the CD group gives seven positive signals with an intensity distribution of 1 : 3 : 6 : 7 : 6 : 3 : 1. For the
CD$_3$CD$_2$ group, the simulated spectrum for $\theta = 270^\circ$ is presented in Figure 5. For this angle, both CD$_3$ (five signals with an intensity distribution of 1:2:3:2:1) and CD$_2$ (seven signals with intensities of 1:3:6:7:6:3:1) groups give maximum positive signals.

5. Conclusion

The 2D MAXY-JRES NMR experiment is a combination of MAXY and homonuclear J-resolved NMR spectroscopy. This technique is used for the identification of CH$_n$CH$_m$ groups in complex samples. In this study, first, evolutions of some product operators under the homonuclear scalar spin-spin coupling Hamiltonian for an SS' ($S = 1, S' = 1$) spin system are obtained. Then, by using the product operator theory, analytical descriptions of the 2D MAXY-JRES experiment for IS$_n$I'S'$_m$ ($I = I' = \frac{1}{2}; S = S' = 1; n = 1, 2, 3; m = 1, 2$) multi-spin systems are presented. The obtained results for each CD$_n$CD$_m$ group represent the FID signals of this experiment. By using these results experimental suggestions are made and simulated spectra are obtained for various CD$_n$CD$_m$ groups. As a result, it is shown that the 2D MAXY-JRES NMR experiment can be used to distinguish CD, CD$_2$ and CD$_3$ groups from each other in CD$_n$CD$_m$ systems.

Appendix A: Complete Product Operator Theory for the IS ($I = 1/2, S = 1$) Spin System

The complete product operator for the IS ($I = 1/2, S = 1$) spin system is presented in our previous study [36]. For this spin system, evolutions of nine angular momentum operators of spin $S = 1$ under r.f. pulse and chemical shift Hamiltonians were obtained, and they are given in Tables 2 and 3, respectively. For the IS ($I = 1/2, S = 1$) spin system evolutions of 32 product operators under the spin-spin coupling Hamiltonian are given in Table 4. The rest 8 product operators of $E, I_z, I_zS_z, S_z, S_z^2, I_z[S_z, S_y]$, and $I_z[S_z, S_y]$ do not change under the spin-spin coupling Hamiltonian.
Appendix B: Product Operator Description of the 2D MAXY-JRES NMR Experiment for the IS₂I'S Multi-Spin System

For the IS₂I'S multi-spin system, the density matrix at thermal equilibrium is \(\sigma_0 = S_{1x} + S_{2x} + S'_c \). By using the computer program the following density matrices for each labelled point are obtained:

\[
\sigma_0 \xrightarrow{90^\circ(S_1,S_2,S'_c)} -S_{1y} - S_{2y} - S'_c \equiv \sigma_1, \tag{B1}
\]

\[
\sigma_1 \xrightarrow{(H_{1x}+H_{2x})\Delta(\Delta=1/(2J_{gs})+J_{s}(\Delta=1/(2J_{gs}))} 2I_c S_{1x} + 2I_c S_{2x} + 2I'_c S'_c, \tag{B2}
\]

\[
\sigma_2 \xrightarrow{180^\circ(S_1,S_2,S'_c)+90^\circ(I,I')} -2I_c S_{1x} - 2I_c S_{2x} - 2I'_c S'_c, \tag{B3}
\]

\[
\sigma_3 \xrightarrow{(H_{1x}+H_{2x})\Delta(\Delta=1/(2J_{gs})+J_{s}(\Delta=1/(2J_{gs}))} 2I_c S_{1x} + 2I_c S_{2x} + 2I'_c S'_c, \tag{B4}
\]

\[
\sigma_4 \xrightarrow{90^\circ(S_1,S_2,S'_c)} -2I_c S_{1y} - 2I_c S_{2y} - 2I'_c S'_c \equiv \sigma_5, \tag{B5}
\]

\[
\begin{align*}
\sigma_{16} &= \frac{1}{2}(-2A + B + 2C - D)c_{2s}\theta \\
&+ \frac{1}{2}(-2C + D)c_{2s}\theta + \frac{1}{2}(B - D)c_{2s}\theta \\
&+ \frac{1}{2}Dc_{2s}\theta \\
&+ \frac{1}{2}D'(c_{2s}c_{4s}c_{2s}\theta + c_{2s}c_{4s}c_{2s}\theta) \\
&+ \frac{1}{2}(B' - D')(c_{2s}c_{2s}c_{2s}\theta + c_{4s}c_{2s}c_{2s}\theta) \\
&- D's_{2s}s_{4s}c_{2s}c_{2s}\theta + G + H)c_{2s}\theta \\
&- (G + H)c_{2s}\theta - Hc_{2s}\theta, \tag{B6}
\end{align*}
\]

where

\[
A = S_{1y} + S_{2y}, \tag{B7}
\]

\[
B = S_{1y}(S_{2x} + S'_{2y}) + (S'_{1x} + S_{1y})S_{2y}, \tag{B8}
\]

\[
B' = S_{1y}(S'_{2x} - S'_{2y}) + (S'_{1x} - S_{1y})S_{2y}, \tag{B9}
\]
\[C = S_{1y}S_{2y}^2 + S_{2y}S_{2y}^2, \]
(B10)
\[D = S_{1y}(S_{2y}^2C^2 + S_{2y}^2C^2) + (S_{1y}^2 + S_{1y})S_{2y}^2S_{2y}^2, \]
(B11)
\[D' = S_{1y}(S_{2y}^2C^2 - S_{2y}^2C^2) + (S_{1y}^2 - S_{1y})S_{2y}^2S_{2y}^2, \]
(B12)
\[F = S_y, \]
(B13)
\[G = S_{1z}S_y + S_{2z}S_y, \]
(B14)
\[H = S_{1z}S_{2z}S_y. \]
(B15)

Also in (B1)–(B6), \(\mathcal{H}_{1J} = 2\pi J_{1} S_{1y} \), \(\mathcal{H}_{2J} = 2\pi J_{2} S_{2y} \), and \(\mathcal{H} = 2\pi J_2 S_{y} \). In the density matrix operator, only the terms with observable product operators are kept, as they are the only ones that contribute to the signal on y-axis detection. Then the magnetization along the y-axis is proportional to \(\langle S_{1y} + S_{2y} \rangle + \langle S_y' \rangle \) and

\[
M_y(t_1, t_2) = \langle S_{1y} + S_{2y} \rangle + \langle S_y' \rangle = \text{Tr}[S_{1y} + S_{2y} \sigma_{16}] + \text{Tr}[S_y' \sigma_{16}].
\]
(B16)

Now it is necessary to obtain the \(\text{Tr}[S_{1y} + S_{2y}]O \) and \(\text{Tr}[S_y'O'] \) values of the observable product operators indicated by \(O \) and \(O' \). These trace values are calculated by a computer program in Mathematica, and the results for several multi-spin systems are given in Tables 5 and 6. For example, the trace value of the \(S_{1y} + S_{2y} \) product operator for the \(IS_{2l'S'} \) multi-spin system is calculated as

\[
\sum_{i=1}^{2} \text{Tr}[S_yO] = \text{Tr}[S_{1y}S_{1y}] + \text{Tr}[S_{2y}S_{2y}]
\]

\[
= \text{Tr}[(E_1 \otimes S_{1y} \otimes E_{25} \otimes E_{I'} \otimes E_{I'})
\]

\[
\cdot (E_1 \otimes S_{1y} \otimes E_{25} \otimes E_{I'} \otimes E_{I'})
\]

\[
+ \text{Tr}[(E_1 \otimes E_{15} \otimes S_{2y} \otimes E_{I'} \otimes E_{I'})
\]

\[
\cdot (E_1 \otimes E_{15} \otimes S_{2y} \otimes E_{I'} \otimes E_{I'})
\]

\[= 144. \]
(B17)

By using Tables 5 and 6,

\[
\langle S_{1y} + S_{2y} \rangle + \langle S_y' \rangle = -16(1 + 2c_{2J})c_{5}(1 - 2c_{2\theta})s_{6}
\]

\[- 8(1 + 2c_{2J})^2 c_{5}^2 s_{6} \]
(B18)

is obtained for the \(IS_{2l'S'} \) multi-spin system. This equation represents the FID signals of the 2D MAXY-JRES NMR experiment for the \(IS_{2l'S'} \) multi-spin system. There exists triplet signals at \((2J, \Omega_2^c) : (\Omega_2) : (-2J, \Omega_2) \) coordinates with the intensity distribution of \(1 : 1 : 1 \) for the \(S \) spin and five signals at \((4J, \Omega_2^c) : (2J, \Omega_2^c) : (\Omega_2^c) : (-2J, \Omega_2^c) : (-4J, \Omega_2^c) \) coordinates with the intensity distribution of \(1 : 2 : 3 : 2 : 1 \) for the \(S' \) spin.
[38] http://oncampus.richmond.edu/~rkanters/POF/