Optimization of Soluble Organic Selenium Accumulation during Fermentation of *Flammulina velutipes* Mycelia

Yunfeng Maa,§, Fu Xiangb,§, Jun Xiangb, and Longjiang Yuc,*

a College of Life Science, Henan University, Kaifeng, 475004, China
b Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Chemistry and Life Science, Huanggang Normal University, Huanggang, 438000, China
c College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. E-mail: xiangfu@hgnu.edu.cn

* Author for correspondence and reprint requests

Z. Naturforsch. 67c, 594 – 602 (2012); received August 6, 2011/September 16, 2012

Selenium is an essential nutrient with diverse physiological functions, and soluble organic selenium (SOS) sources have a higher bioavailability than inorganic selenium sources. Based on the response surface methodology and central composite design, this study presents the optimal medium components for SOS accumulation in batch cultures of *Flammulina velutipes*, i.e. 30 g/L glucose, 11.2 mg/L sodium selenite, and 1.85 g/L NH\textsubscript{4}NO\textsubscript{3}. Furthermore, logistic function model feeding was found to be the optimal feeding strategy for SOS accumulation during *Flammulina velutipes* mycelia fermentation, where the maximum SOS accumulation reached (4.63 \pm 0.24) mg/L, which is consistent with the predicted value.

Key words: Feeding Strategy, *Flammulina velutipes*, Soluble Organic Selenium