Antimicrobial Evaluation of Indole-Containing Hydrazone Derivatives

Hanif Shirinzadeha, Nurten Altanlarb, Nihal Yucelc, Seckin Ozdena, and Sibel Suzena,*

a Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara, Turkey. Fax: +90 312 2131081. E-mail: sibel@pharmacy.ankara.edu.tr
b Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara, Turkey
c Department of Biology, Faculty of Arts and Sciences, Gazi University, 06500, Teknik Okullar, Ankara, Turkey

* Author for correspondence and reprint requests

Z. Naturforsch. 66c, 340–344 (2011); received October 8, 2010/April 15, 2011

There has been an increasing importance of drug-resistant pathogens in clinical microbiological and antibacterial research. Indoles and hydrazone-type compounds constitute important classes of compounds in the search for effective agents against multidrug-resistant microbial infections. In this study a series of 1-methylindole-3-carboxaldehyde hydrazone derivatives were evaluated for their in vitro antimicrobial activities using the two-fold serial dilution technique against \textit{Staphylococcus aureus}, methicillin-resistant \textit{S. aureus}, methicillin-resistant \textit{S. aureus} isolate, \textit{Escherichia coli}, \textit{Bacillus subtilis}, and \textit{Candida albicans}. The minimum inhibitory concentration (MIC) of the test compounds and the reference standards sulfamicillin, ampicillin, fluconazole, and ciprofloxacin was determined. All compounds possessed a broad spectrum of activity having MIC values of 6.25–100 µg/ml against the tested microorganisms. Aromaticity and disubstitution of the phenyl ring with especially fluorine and chlorine atoms were found to be significant for the antimicrobial activity

\textit{Key words:} Indole, Hydrazone, Antimicrobial